Author: Potylitsyn, A.
Paper Title Page
TUCO02 Experimental Observation of Submillimeter Coherent Cherenkov Radiation at CLARA Facility 261
 
  • K.V. Fedorov, P. Karataev, A.N. Oleinik
    JAI, Egham, Surrey, United Kingdom
  • K.V. Fedorov, A. Potylitsyn, A. Potylitsyn
    TPU, Tomsk, Russia
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • A.N. Oleinik
    BelSU, Belgorod, Russia
  • T.H. Pacey, Y.M. Saveliev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • T.H. Pacey
    UMAN, Manchester, United Kingdom
  • Y.M. Saveliev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Nowadays, the method of longitudinal beam profile diagnostic based on transition radiation (TR) spectrum is well studied [1] and is constantly being applied, while using of coherent Cherenkov radiation (CCR) is a modern task that opens up new possibilities in this area [2]. In current work we conducted experiments on CCR generation, observation and it further spectral analysis at 0.1-30 THz spectral range. All experimental work was at CLARA (beam area 1) facility (~50 MeV beam energy at up to 10 Hz pulse repetition rate with sub-ps bunch length). Inside of vacuum chamber we developed movable platform where both VCR and TR target were placed, which is allows us to observe both effects during one accelerator run. For spectral analysis we used Martin-Pupplet interferometer as it provides higher signal to noise ratio and allows us to perform instabilities normalisation. As a result we will demonstrate a selection of interferograms and spectrums (as well as reconstructed longitudinal beam profiles) for different machine setups and distances between charged particle beam and Cherenkov target. By using mathematical analysis it has been shown that CLARA bunch length was about 1.2 ps.  
slides icon Slides TUCO02 [22.952 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUCO02  
About • paper received ※ 03 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP012 Image of the Transverse Bunch Profile via COTR 313
 
  • A. Potylitsyn, T. Gusvitskii, L.G. Sukhikh
    TPU, Tomsk, Russia
  • G. Kube, A.I. Novokshonov
    DESY, Hamburg, Germany
 
  Funding: This work was supported by the grant of the Russian Ministry of Science # 3/1903.2017.
Transverse beam profile diagnostics based on Optical Transition Radiation (OTR) is a routine technique at most modern electron linear accelerators (linacs) which is difficult to implement for FEL beams [*] and LWPA accelerators [**]. The reason is that a standard OTR beam profile monitor with a few micrometers space resolution cannot be used for measurements of ultrashort bunch profiles due to coherent effects in the OTR emission process [***]. We have developed an approach which allows calculating the propagation of coherent optical transition radiation (COTR) through a standard optical system consisting of a focusing lens and a spatial resolving detector placed in the image plane. Strict summation of the OTR fields emitted coherently by electrons inside the bunch and its focusing onto the detector plane allows obtaining a COTR image of the bunch profile. With the assumption of a Gaussian transverse bunch profile it is shown that the resulting image has a typical "ring" shape, characteristics of which are depended on the bunch transverse rms size and optical system parameters.
* E. Saldin, et al., "The Physics of Free Electron Lasers", Springer-Verlag, 2010.
** N. Bourgeois, et al., AIP Conf. Proc., 1507, 258 (2012).
*** H. Loos, R. Akre, et al., SLAC-PUB-13395 (2008).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP012  
About • paper received ※ 04 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP037 First Measurements of Cherenkov-Diffraction Radiation at Diamond Light Source 624
 
  • D.M. Harryman, P. Karataev
    JAI, Egham, Surrey, United Kingdom
  • M. Apollonio, L. Bobb
    DLS, Oxfordshire, United Kingdom
  • M. Bergamaschi, R. Kieffer, M. Krupa, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
  • A. Potylitsyn
    TPU, Tomsk, Russia
 
  Cherenkov Diffraction Radiation (ChDR), appearing when a charged particle moves in the vicinity of a dielectric medium with speed faster than the speed of light inside the medium, is a phenomenon that can be exploited for a range of non-invasive beam diagnostics. By using dielectric radiators that emit photons when in proximity to charged particle beams, one can design devices to measure beam properties such as position, direction and size. The Booster To Storage-ring (BTS) test stand at Diamond Light Source provides a 3 GeV electron beam for diagnostics research. A new vessel string has been installed to allow the BTS test stand to be used to study ChDR diagnostics applicable for both hadron and electron accelerators. This paper will discuss the commissioning of the BTS test stand, as well as exploring the initial results obtained from the ChDR monitor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP037  
About • paper received ※ 04 September 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAO01 Cherenkov Diffraction Radiation as a tool for beam diagnostics 660
 
  • T. Lefèvre, D. Alves, M. Bergamaschi, A. Curcio, O.R. Jones, R. Kieffer, S. Mazzoni, N. Mounet, A. Schlogelhofer, E. Senes
    CERN, Geneva, Switzerland
  • M. Apollonio, L. Bobb
    DLS, Oxfordshire, United Kingdom
  • A. Aryshev, N. Terunuma
    KEK, Ibaraki, Japan
  • M.G. Billing, Y.L. Bordlemay Padilla, J.V. Conway, J.P. Shanks
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.V. Bleko, S.Yu. Gogolev, A.S. Konkov, J.S. Markova, A. Potylitsyn, D.A. Shkitov
    TPU, Tomsk, Russia
  • K.V. Fedorov, D.M. Harryman, P. Karataev, K. Lekomtsev
    JAI, Egham, Surrey, United Kingdom
  • J. Gardelle
    CEA, LE BARP cedex, France
  • K. Łasocha
    Jagiellonian University, Kraków, Poland
 
  During the last three years, the emission of Cherenkov Diffraction Radiation (ChDR), appearing when a relativistic charged particle moves in the vicinity of a dielectric medium, has been investigated with the aim of providing non-invasive beam diagnostics. ChDR has very interesting properties, with a large number of photons emitted in a narrow and well-defined solid angle, providing excellent conditions for detection with very little background. This contribution will present a collection of recent beam measurements performed at several facilities such as the Cornell Electron Storage Ring, the Advanced Test Facility 2 at KEK, the Diamond light source in the UK and the CLEAR test facility at CERN. Those results, complemented with simulations, suggest that the use of both incoherent and coherent emission of Cherenkov diffraction radiation could open up new beam instrumentation possibilities for relativistic charged particle beams.  
slides icon Slides THAO01 [10.658 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-THAO01  
About • paper received ※ 09 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)