Keyword: brilliance
Paper Title Other Keywords Page
TUP1WD03 The Development and Applications of the Digital BPM Signal Processor at SINAP ion, cavity, FEL, SRF 43
 
  • L.W. Lai, S.S. Cao, F.Z. Chen, Y.B. Leng, Y.B. Yan, W.M. Zhou
    SSRF, Shanghai, People's Republic of China
  • J. Chen, Y.B. Leng, Y.B. Yan, W.M. Zhou
    SINAP, Shanghai, People's Republic of China
 
  BPM signal processor is one of key beam diagnostics instruments. It has been progressing from analog to digital. The current major processors are digital BPM signal processor (DBPM). Except for some commercial products on-the-shelf, several laboratories developed in-house DBPMs for their own facilities. SINAP started the DBPM development since 2009, when the SSRF phase-I has been completed. After years of optimization, the DBPM has been used in large-scale on some facilities, including SSRF, DCLS and SXFEL. At the same time, some extended functions have been developed to meet special applications on accelerator based on the hardware platform. This topic will introduce the development and applications of the DBPM at SINAP, also the future DBPM development for next generation light source will be discussed here.  
slides icon Slides TUP1WD03 [14.850 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FLS2018-TUP1WD03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PT022 PHASE SHIFTER APPLICATION IN DOUBLE UNDULATOR CONFIGURATION OF HEPS ion, undulator, radiation, electron 120
 
  • X.Y. Li, Y. Jiao, S.K. Tian
    IHEP, Beijing, People's Republic of China
 
  For over 6 meters long straight-section of HEPS, collinear double-cryogenic permanent magnet undulator(CPMU) is designed for high energy photon users to achieve higher brightness. Angular and spatial profiles of radiation produced by the double undulator configuration have been derived analytically. The efficiency of phase shifter on improving the brightness of double-CPMU is therefore evaluated with the beam energy spread and emittance are taken into account. Optimized beta-functions of electron beam are obtained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FLS2018-WEP2PT022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)