Author: Yang, Y.C.
Paper Title Page
TUP2WD04 Preliminary Design of HEPS Storge Ring Vacuum Chambers and Components 52
 
  • P. He, B. Deng, D.Z. Guo, Q. Li, B.Q. Liu, Y. Ma, Y.C. Yang, L. Zhang
    IHEP, Beijing, People's Republic of China
  • X.J. Wang
    Institute of High Energy Physics (IHEP), People's Republic of China
 
  In the design process of HEPS vacuum system, we meet the following limitations. Vacuum chamber must fit inside multipole magnet bore diameter of 25mm (without touching). Water channels and x-ray extraction ports must pass through a 11mm vertical pole gap. Provide an average pressure of 1nTorr during operations with 200mA beam current. Control thermal drift of BPM to ~μm and vibration amplitude ~nm level. Minimize impedance effects. This paper introduces the design of various vacuum chambers, including material selection, mechanical simulation analysis, welding test and so on.  
slides icon Slides TUP2WD04 [4.062 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FLS2018-TUP2WD04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PT023 Preparation and Characterization of Non-Evaporable Ti-Zr-V Getter Films for HEPS 125
 
  • Y. Ma, D.Z. Guo, P. He, B. Liu, Y.C. Yang
    IHEP, Beijing, People's Republic of China
 
  For the low activation temperature and high pumping speed, surface pumping capacity, the TiZrV coatings were chosen to high energy photo source (HEPS). Films of TiZrV alloy have been deposited on 1.5 meter long, cylindrical vacuum chambers of 22mm diameter copper substrates in krypton ambient using DC magnetron sputtering system. Film composition, the activation temperature and pumping properties have been investigated in order to optimize the deposition parameters for vacuum applications. The films were also studied using the X-ray photo-emission electron spectroscopy (XPS) after annealing them at different temperatures ranging from 120°C to 300°C for two hours in ultra-high vacuum environment. Pumping speed and surface pumping capacity testing facilities were also being constructed to investigate the characterization of TiZrV.  
poster icon Poster WEP2PT023 [1.037 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FLS2018-WEP2PT023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)