Paper | Title | Page |
---|---|---|
TUA2WB01 |
Future Synchrotron Light Source in Thailand | |
|
||
A 3-GeV synchrotron light source has been designed as a future light source in Thailand. The storage ring is designed utilising Double Triple Bend Achromat (DTBA) lattice to achieve beam emittance below 1 nm·mrad, maximum beam current of 300 mA and two straight sections per cell. A full energy linac is a promising choice as the storage ring injector due to its potential to be operated as the storage ring injector and an injector for a short pulse facility. The linac can be upgraded to a soft X-ray Free Electron Laser (FEL) facility by extending an undulator section. The design of the linac injector consists of a pre-injector based on a photocathode RF gun, two main linacs based on high gradient S-band structures, and two bunch compressors. The high gradient S-band structure with the accelerating gradient of 35-40 MV/m is suitable to achieve the beam energy of 3 GeV within the injector length of about 150 m. The bunch compressors are included for generating 100-fs electron bunches for the short pulse facility. This paper presents designs and simulation results of the storage ring and the linac injector of Thailand new light source. | ||
Slides TUA2WB01 [7.487 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEP1WD03 |
RF System for the Storage Ring and Linac of the Future Synchrotron Light Facility in Thailand | |
|
||
The future synchrotron light facility in Thailand is in designing process, which has a goal to complete a detailed design report in 2018. The new light source will be a ring-based light source with the circumference of approximately 300m and an electron energy of 3GeV. The maximum beam current is 300mA with a beam emittance below 1.0 nm·rad. The accelerator is based on a full energy linac, which will utilize a S-band frequency structures. The RF system of the storage ring is based on 500MHz frequency. The EU-HOM damped cavity and the new SPring-8 design TM020 cavity is the choice of the storage ring cavity. The RF power transmitter can either be a high-power klystron (1 MW klystron) feed all RF cavities or a combination of low power IOTs or solid-state amplifiers feed each cavity. The high gradient S-band structure is considered as the main accelerating structure for linac. The RF power system for linac will base on klystron and a modular modulator. This paper presents details of RF systems options for this new light source project. | ||
Slides WEP1WD03 [2.044 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |