Author Index: A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z

Schmidt, B.

Paper Title Page
MOPP036 Next Generation Synchronization System for the VUV-FEL at DESY 118
 
  • H. Schlarb, V. Ayvazyan, F. Ludwig, D. Noelle, B. Schmidt, S. Simrock
    DESY, Hamburg
  • F.X. Kaertner
    MIT, Cambridge, Massachusetts
  • A. Winter
    Uni HH, Hamburg
 
 

The control and stabilization of the longitudinal beam profile and the bunch arrival time in linac driven VUV or X-ray Free-Electron Lasers require special effort and new developments in the fields of low level RF controls, global synchronization systems and longitudinal beam feedbacks. In this paper we describe the required upgrades for the VUV-FEL at DESY to synchronize the FEL pulse and optical lasers to the level of hundred femtoseconds (FWHM).

 
   
THPP029 Broadband Single Shot Spectrometer 514
 
  • H. Delsim-Hashemi, O. Grimm, J. Rossbach, H. Schlarb, B. Schmidt, P. Schmuser
    DESY, Hamburg
  • A.F.G. van der Meer
    FOM Rijnhuizen, Nieuwegein
 
 

Funding: DESY

FEL facilities are pushing to achieve higher peak currents mainly by means of compressing bunches longitudinally. This process defines a machine parameter that has to be fine-tuned empirically. Among the operational types of diagnostic tools for longitudinal phase-space are those based on IR spectroscopy. The most commonly used IR spectrometers at the FEL facilities are operating in the scanning mode and are not fast enough to be applicable for monitoring bunch compression. On the other hand, any non-scanning spectrometer may suffer from the low intensity that is available from coherent IR radiation in short time intervals in different wavelengths. The proposed "Single Shot Spectrometer" is based on using gratings as dispersive elements. Pioneering tests with a transmission grating have shown the feasibility of the concept. In a second step, a version with "Reflective Blazed Grating" will be tested and should allow getting the maximum available signal for the whole spectrum and improved resolution. Parallel to the study of optical parts, an array of pyroelectric detectors with integrated multi-channel readout is under development.

 
   
THPP039 Spectral Decoding Electro Optic Bunch Length and Arrival Time Jitter Measurements at the DESY VUV-FEL 549
 
  • B. Steffen, S. Casalbuoni, E.-A. Knabbe, B. Schmidt
    DESY, Hamburg
  • P. Schmuser, A. Winter
    Uni HH, Hamburg
 
 

For the operation of a SASE FEL, the longitudinal bunch profile is one of the most critical parameters. At the superconducting linac of the VUV-FEL at DESY, we have installed an electro optic spectral decoding (EOSD) experiment to probe the time structure of the electric field of the bunches to better than 200 fs rms. The field induced birefringence of a ZnTe crystal is detected by a 30 femtosecond laser pulse (TiSa) and the time structure is measured by encoding it on the spectrum of the chirped TiSa pulse. First results on jitter measurements and for the bunch length as function of the linac parameters are presented.