Orlandi, G.L.
Paper | Title | Page |
---|---|---|
WEOA001 | Feedback Control Of Dynamical Instabilities In Classical Lasers And Fels | 391 |
|
||
Dynamical instabilities lead to unwanted full-scale power oscillations in many classical lasers and FEL oscillators. For a long time, applications requiring stable operation were typically performed by working outside the problematic parameter regions. A breakthrough occurred in the nineties [1], when emphasis was made on the practical importance of unstable states (stationary or periodic) that coexist with unwanted oscillatory states. Indeed, although not observable in usual experiments, unstable states can be stabilized, using a feedback control involving arbitrarily small perturbations of a parameter. This observation stimulated a set of works leading to successful suppression of dynamical instabilities (initially chaos) in lasers, sometimes with surprisingly simple feedback devices [2]. We will review a set of key results, including in particular the recent works on the stabilization of mode-locked lasers, and of the super-ACO, ELETTRA and UVSOR FELs [3]. [1] Ott et al. Phys. Rev. Lett., 64, 1196 (1990). [2] Bielawski et al. Phys. Rev. A 47, 327 (1993). [3] Bielawski et al. Phys. Rev. E. 69, 045502 (2004), De Ninno & Fanelli, Phys. Rev. Lett. 92, 094801 (2004), Bruni et al., proc. EPAC 2004. |
||
THPP048 | Spatial Coherence Effects in the Transition Radiation Spectrum for Relativistic Charged Beams: Theoretical Results and Beam Diagnostics Implications | 576 |
|
||
In the electromagnetic radiative phenomena originated by relativistic charged beams, angular distortions as well as variations of the photon flux are commonly observed as a function of the ratio between the beam transverse size and the observed wavelength, even at a wavelength shorter than the longitudinal bunch length. In the framework of a single particle theory of the transition radiation, diffractive alterations of the spectrum due, for instance, to the finite size of the radiator screen are already known. For relativistic three-dimensional charged beams, it could be interesting to check if the transition radiation emission undergoes modifications depending on the finite value of the beam transverse size with respect to the observed wavelength. Taking into account the beam diagnostics applications of the transition radiation in a linear accelerator, such an experimental check can offer promising perspectives. The theoretical background and physical basis of the spatial coherence effects affecting the spectral distribution of the transition radiation intensity in conditions of temporal incoherence will be presented. The main beam diagnostics applications will be also contoured. |
||