Fawley, W. M.
(William M. Fawley)

WEBOS01 Current-Enhanced SASE Using an Optical Laser and its Application to the LCLS
Alexander A Zholents, William M. Fawley (LBNL/CBP, Berkeley, California), Paul J Emma, Zhirong Huang, Gennady Stupakov (SLAC, Menlo Park, California), Sven Reiche (UCLA/DPA, Los Angeles - California)

We propose a significant enhancement of the electron peak current entering a SASE undulator by inducing an energy modulation in an upstream wiggler magnet via resonant interaction with an optical laser, followed by micro-bunching of the energy-modulated electrons at the accelerator exit. This current enhancement allows a considerable reduction of the FEL gain length. The x-ray output consists of a series of uniformly spaced spikes, each spike being temporally coherent. The duration of this series is controlled by the laser pulse and in principle can be narrowed down to just a single, ~100-attosecond spike. Given potentially absolute temporal synchronization of the x-ray spikes to the energy-modulating laser pulse, this scheme naturally makes pump-probe experiments available to SASE FEL’s. We also study various detrimental effects related to the high electron peak current and discuss potential cures. We suggest a possible operational scenario for the LCLS optimized with respect to the choice of the modulating laser beam and electron beam parameters. Numerical simulations are provided.

THPOS51 Harmonic Cascade FEL Designs for LUX, a Facilty for Ultrafast X-ray Science
Corlett John, William M. Fawley, Gregory Penn, Alexander A Zholents (LBNL/CBP, Berkeley, California), Weishi Wan (LBNL/ALS, Berkeley, California), Matthias Reinsch, Jonathan Wurtele (UC Berkeley, Berkeley)

LUX is a proposed facility for ultrafast X-ray science, based on an electron beam accelerated to ~3-GeV energy in a superconducting, recirculating linac.Included in the design are multiple FEL beamlines which use the harmonic cascade approach to produce coherent XUV & soft X-ray emission beginning with a strong input external laser seed at ~200 nm wavelength. Each cascade module generally operates in the low-gain regime and is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a "virgin" pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse. For each cascade, the output photon energy can be selected over a wide range by varying the seed laser wavelength and the field strength in the undulators. We present numerical simulation results, as well as those from analytical models, to examine predicted FEL performance. We also discuss lattice considerations pertinent to harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

TUPOS48 A Concept for z-Dependent Microbunching Measurements with Coherent X-ray Transition Radiation in a SASE FEL
Alex H. Lumpkin (ANL/APS, Argonne, Illinois), William M. Fawley (LBNL/CBP, Berkeley, California), Don W. Rule (NSWC-CD, West Bethesda)

Previously, measurements in the visible to VUV regimes of z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL) have provided important information about the fundamental mechanisms. In those experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed Linac Coherent Light Source (LCLS), the intense SASE emission is either too strongly transmitted at 1.5 angstroms or the needed foil thickness for blocking scatters the electron beam too much. Since coherent x-ray transition radiation (CXTR) is emitted in an annulus with opening angle 1/γ = 36 µrad for 14.09-GeV electrons, one could use a thin foil or foil stack to generate the XTR and CXTR and an annular crystal to wavelength sort the radiation. The combined selectivity will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER simulations support the z-dependent gain evaluation plan.