Keyword: booster
Paper Title Other Keywords Page
MOYAA05 The Status of CEPC collider, injection, operation, luminosity 30
 
  • C.H. Yu, S. Bai, T.J. Bian, X. Cui, J. Gao, H. Geng, D.J. Gong, D. Ji, Y.D. Liu, C. Meng, Q. Qin, D. Wang, N. Wang, Y. Wang, Y. Wei, J.Y. Zhai, Y. Zhang, H.J. Zheng, Y.S. Zhu
    IHEP, Beijing, People’s Republic of China
 
  Circular electron-positron collider (CEPC) is a dedi-cated project proposed by China to research the Higgs boson. The collider ring provides e+ e collision at two interaction points (IP). The luminosity for the Higgs mode at the beam energy of 120GeV is 3*1034 cm-2s-1 at each IP while the synchrotron radiation (SR) power per beam is 30MW. Furthermore, CEPC is compatible with W and Z experiments, for which the beam ener-gies are 80 GeV and 45.5 GeV respectively. The lumi-nosity at the Z mode is higher than 1.7*1035 cm-2s-1 per IP. Top-up operation is available during the data taking of high energy physics. The status of CEPC will be introduced in detail in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-MOYAA05  
About • paper received ※ 23 September 2018       paper accepted ※ 08 March 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB03 Overall Injection Strategy for FCC-ee emittance, linac, collider, wiggler 131
 
  • S. Ogur, F. Antoniou, T.K. Charles, B. Härer, B.J. Holzer, Y. Papaphilippou, L. Rinolfi, T. Tydecks, F. Zimmermann
    CERN, Geneva, Switzerland
  • M. Aiba
    PSI, Villigen PSI, Switzerland
  • A.M. Barnyakov, A.E. Levichev, P.V. Martyshkin, D.A. Nikiforov
    BINP SB RAS, Novosibirsk, Russia
  • I. Chaikovska, R. Chehab
    LAL, Orsay, France
  • O. Etisken
    Ankara University, Faculty of Sciences, Ankara, Turkey
  • K. Furukawa, N. Iida, T. Kamitani, F. Miyahara
    KEK, Ibaraki, Japan
  • E.V. Ozcan
    Bogazici University, Bebek / Istanbul, Turkey
  • S.M. Polozov
    MEPhI, Moscow, Russia
 
  The Future Circular electron-positron Collider (FCC-ee) requires fast cycling injectors with very low extraction emittances to provide and maintain extreme luminosities at center of mass energy varying between 91.2-385 GeV in the collider. For this reason, the whole injector complex table is prepared by putting into consideration the minimum fill time from scratch, bootstrapping, transmission efficiency as well as store time of the beams in synchrotrons to approach equilibrium emittances. The current injector baseline contains 6 GeV S-band linac, a damping ring at 1.54 GeV, a prebooster to accelerate from 6 to 20 GeV, which is followed by 98-km top up booster accelerating up to final collision energies. Acceleration from 6 GeV to 20 GeV can be provided either by Super Proton Synchrotron (SPS) of CERN or a new synchrotron or C-Band linac, distinctively, which all options are retained. In this paper, the current status of the whole FCC-ee injector complex and injection strategies are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-TUPAB03  
About • paper received ※ 20 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB05 An On-axis Injection Design for CEPC injection, collider, dynamic-aperture, damping 143
 
  • X. Cui, C.H. Yu, J.Y. Zhai, Y. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Considering the requirement on the dynamic aperture in the main collider, an on-axis injection method is need-ed for the Higgs energy at CEPC. A swap-out on-axis injection scheme using the booster as an accumulation ring is given in this paper. Some dynamical problems concerning the effectiveness of this injection scheme is also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-TUPAB05  
About • paper received ※ 27 September 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB06 Design and Beam Dynamics of the CEPC Booster injection, collider, emittance, optics 146
 
  • D. Wang, X. Cui, J. Gao, D. Ji, Y.D. Liu, C. Meng, N. Wang, C.H. Yu, J.Y. Zhai, Y. Zhang
    IHEP, Beijing, People’s Republic of China
 
  The CEPC booster needs to provide electron and positron beams to the collider at different energy with required injection speed. A 10 GeV linac is adopted as the injector for CDR. Then the beam energy is accelerated to specific energy according to three modes of CEPC collider ring (H, W and Z). The geometry of booster is designed carefully in order to share the same tunnel with collider. The design status of booster including parameters, optics and dynamic aperture is discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-TUPAB06  
About • paper received ※ 26 September 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXAA02 Polarization Issues at CEPC polarization, resonance, wiggler, electron 182
 
  • S.A. Nikitin
    BINP SB RAS, Novosibirsk, Russia
 
  We study a possibility of obtaining transversely polarized electron-positron beams at the CEPC collider. At the beam energy of 45 GeV, this requires the use of the special wigglers to speed up the radiative self-polarization process. A numerical estimation of the depolarizing effect of the collider field errors is made, taking into account the modulation of the spin precession frequency by synchrotron oscillations. In addition, we consider an alternative possibility of obtaining polarization by accelerating the polarized particles in the booster and then injecting them into the main ring. This option saves time spent on the polarization process, and is also crucial for obtaining longitudinal polarization.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEXAA02  
About • paper received ※ 19 September 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXAA04 Ideas for Longitudinal Polarization at the Z/W/H/top Factory polarization, solenoid, acceleration, positron 190
 
  • I. Koop, A.V. Otboev
    BINP SB RAS, Novosibirsk, Russia
  • Yu.M. Shatunov
    Budker INP & NSU, Novosibirsk, Russia
 
  Different schemes for getting the longitudinal polarization at FCC-ee are considered. Depolarization rates for rings with spin rotators are evaluated and methods of acceleration of polarized beams in a booster synchrotron are proposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEXAA04  
About • paper received ※ 10 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBB05 CEPC Collider and Booster Magnets dipole, sextupole, quadrupole, collider 247
 
  • M. Yang, F.S. Chen, W. Kang, X.J. Sun, Y.S. Zhu
    IHEP, Beijing, People’s Republic of China
 
  Funding: Work supported in part by the Yifang Wang scientific Studio of the Ten Thousand Talents Project.
A Circular Electron Positron Collider (CEPC) with a circumference of about 100 km, a beam energy up to 120 GeV is proposed to be constructed in China. Most mag-nets for CEPC Booster and Collider ring are conventional magnets. The quantities of the magnets are large, so the cost and power consumption are two of the most im-portant issues for the magnet design and manufacturing. The dual aperture dipole and quadrupole magnet with low current high voltage are used in the collider ring. While in the booster the dipole magnet works at very low field, so a low packing factor dipole magnet or a coil type without iron design will be investigated and chosen. In this paper, the conceptual design of the CEPC main mag-nets are in detailed and the R&D plan is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEOBB05  
About • paper received ※ 19 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB05 Conceptional design of CEPC Cryogenic system cryogenics, collider, cryomodule, cavity 282
 
  • J.Q. Zhang, R. Han, S.P. Li
    IHEP, Beijing, People’s Republic of China
 
  The CEPC has two rings, the booster ring and the collider ring. There are 432 superconducting cavities in total. In the booster ring, there are 96 ILC type 1.3 GHz 9-cell superconducting cavities; eight of them will be packaged in one 12-m-long module. There are 12 such modules. In the collider ring, there are 240 650 MHz 2-cell cavities; six of them will be packaged in one 11-m-long module. There are 40 of them. All the cavities will be cooled in a liquid-helium bath at a temperature of 2K to achieve a good cavity quality factor. The cooling benefits from helium II thermo-physical properties of large effective thermal conductivity and heat capacity as well as low viscosity and is a technically safe and economically reasonable choice. The 2K cryostat will be protected against heat radiation by means of two thermal shields cooling with 5-8K helium as well as 40-80K helium from a refrigerator. There are 4 cryo-stations along the 100km circular collider with the physical design of double ring. Generally, each cryo-station is supplied from a common cryogenic plant, with one refrigerator and one distribution box. The cooling capacity of each refrigerator is 18kW @ 4.5K.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEPAB05  
About • paper received ※ 10 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)