MOO3A  —  Monday, third oral session   (21-May-07   16:20—17:40)

Chair: K. Wittenburg, DESY, Hamburg

Paper Title Page
MOO3A01 Optical Transition Radiation Monitor for High Intensity Proton Beam at the J-PARC 30
 
  • A. Toyoda, A. Agari, E. Hirose, M. Ieiri, Y. Katoh, M. Minakawa, H. Noumi, Y. Sato, Y. Suzuki, H. Takahashi, M. Takasaki, K. H. Tanaka, H. Watanabe, Y. Yamanoi
    KEK, Tsukuba
 
  The OTR is a powerful tool to observe 2-dimensional information of beam profile at the high intensity beamline because the OTR intensity only depends on the screen reflectivity so that we can minimize a beam loss. However, it is necessary to overcome large background due to the Cerenkov radiation and low radiation tolerance of camera system. The purpose of the present effort is to achieve small background and good S/N and to prolong the lives of the camera system. This requires that amount of potential Cerenkov radiator be minimized and radiation level at the camera system be suppressed. For this requirement, we design and develop an OTR monitor with the optical system of a Newtonian telescope type. Detail design of the optical system and a result of background measurement performed at one of primary proton beam lines of our old 12 GeV Proton Synchrotron will be presented.  
MOO3A02 Beam Induced Fluorescence (BIF) Monitor for Transverse Profile Determination of 5 to 750 MeV/u Heavy Ion Beams 33
 
  • F. Becker, C. A. Andre, P. Forck
    GSI, Darmstadt
  • D. Hoffmann
    TU Darmstadt, Darmstadt
 
  In the frame of the FAIR-project (facility for antiproton and ion research) at GSI, high intensity beams from protons to Uranium ions in the energy range from 100 MeV/u to 30 GeV/u are foreseen. In transport lines between the synchrotrons and in front of production targets a precise beam alignment is mandatory. Since the beam energy will increase from 90 Joule to about 104 Joule per ion pulse, conventional intercepting beam diagnostics may not be used. For transverse profile determination we investigated a non-intercepting Beam Induced Fluorescence (BIF) monitor in residual nitrogen. An image intensified CCD camera was used to record the fluorescence images representing the beam profile. The photon yield and background contribution were determined for different ion species, beam energies and N2 pressures. Applying narrowband 10 nm interference filters we mapped the spectral response and associated it with the N2 transitions. Profile distortions were compared to simulations taking into account effects as momentum transfer, gas dynamics and the electrical field of the ion beam. Additionally the feasibility and appropriate layout for different diagnostic tasks is discussed.  
slides icon Slides  
MOO3A03 First Vibrating Wire Monitor Measurements of a Hard X-ray Undulator Beam at the Advanced Photon Source 36
 
  • G. Decker
    ANL, Argonne, Illinois
  • S. G. Arutunian, M. R. Mailian
    YerPhI, Yerevan
  • G. Rosenbaum
    UGA, Athens, Georgia
 
  The first hard x-ray flux measurements with a vibrating wire monitor (VWM) using the acoustic resonance frequencies of two vertically-offset horizontal stainless steel wires as temperature diagnostics were conducted at APS beamline 19-ID. Due to the high sensitivity of this technique, the studies were performed at extremely low power levels using radiation from a 3.3-cm-period permanent magnet hybrid undulator with a 5-mA electron beam at an energy of 7 GeV. The x-ray beam was filtered by transmission through 7 mm of beryllium placed in the photon beam path, assuring that only hard x-rays were detected. The particle beam was scanned through a range of 400 microradians using an asymmetric closed-orbit angle bump, producing two vertical photon beam profiles. The difference between processed wire signals provides a very sensitive measure of photon beam position. Details of the measurements will be given, along with a discussion of the limitations of the method and possible future research directions.  
slides icon Slides