A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V  

free-electron-laser

Paper Title Other Keywords Page
WEPB08 Noise and drift characterization of critical components for the laser based synchronization system at FLASH laser, extraction, optics, radiation 250
 
  • B. Lorbeer, B. Lorbeer
    TUHH, Hamburg
  • F. Löhl, F. Ludwig, J. M. Müller, H. Schlarb, A. Winter
    DESY, Hamburg
  At FLASH, a new synchronization system based on distributing streams of short laser pulses through optical fibers will be installed and commissioned in 2007. At several end stations, a low drift- and low noise conversion of the optical signal into RF signals is needed. In this paper, we present the influence of photodiodes on the phase stability of the optical pulse streams and investigate the drift performance of the photo-detection scheme for the extraction of the RF signal.  
 
WEPB16 First prototype of an optical cross-correlation based fiber-link stabilization for the FLASH synchronization system laser, polarization, feedback, electron 265
 
  • F. Löhl, H. Schlarb
    DESY, Hamburg
  • J. Chen, F. X. Kaertner, J. Kim
    MIT, Cambridge, Massachusetts
  A drift free synchronization distribution system with femtosecond accuracy is of great interest for free-electron-lasers such as FLASH or the European XFEL. Stability at that level can be reached by distributing laser pulses from a mode-locked erbium-doped fiber laser master oscillator over actively optical-length stabilized fiber-links. In this paper we present a prototype of a fiber-link stabilization system based on balanced optical cross-correlation. The optical cross-correlation offers drift-free timing jitter detection. With this approach we were able to reduce the timing jitter added by a 400 m long fiber-link installed in a noisy accelerator environment to below 10 fs (rms) over 12 hours.