Keyword: solenoid
Paper Title Other Keywords Page
MOP007 The Design and Calculation on the Injection and Central Region for CYCIAE-50 injection, cyclotron, ion-source, MMI 39
 
  • L.Y. Ji, S. An, F.P. Guan, P. Huang, X.L. Jia, Y.L. Lv, C. Wang, S.L. Wang, T.J. Zhang, X. Zheng
    CIAE, Beijing, People’s Republic of China
 
  A 50 MeV cyclotron (CYCIAE-50) is been building at China Institute of Atomic Energy. CYCIAE-50 is a compact H cyclotron with the proton beam energy of 30 MeV to 50 MeV and the beam current of 10 uA. A multi-cusp H ion source with the beam current of 3 mA will be used for this machine. The design on the injection and central region of CYCIAE-50 has been finished. The way of matching the beam from ion source to central region and the design of central region will be present in this paper. In addition, some significant problems in central region will be discussed, including radial alignment, axial focusing, longitudinal focusing and energy gain, etc.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOP007  
About • paper received ※ 15 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP006 The Injection and Chopper-Based System at Arronax C70XP Cyclotron injection, experiment, cyclotron, simulation 159
 
  • F. Poirier, F. Bulteau-harel, T. Durand, X. Goiziou, C. Koumeir, A. Sengar, H. Trichet
    Cyclotron ARRONAX, Saint-Herblain, France
  • G. Blain, M. Fattahi, F. Haddad, J. Vandenborre
    SUBATECH, Nantes, France
  • S. Chiavassa, G. Delpon
    ICO, Saint - Herblain, France
  • F. Poirier
    CNRS - DR17, RENNES, France
 
  Funding: This work has been, in part, supported by grants from the French National Agency for Research, Arronax-Plus n°ANR-11-EQPX-0004, IRON n°ANR-11-LABX-18-01 and Next n°ANR-16-IDEX-0007.
The multi-particle cyclotron of the Arronax Public Interest Group (GIP) is used to perform irradiation up to hundreds of µA on various experiments and targets. To support low and high average intensity usage and adapt the beam time structure required for high peak intensity operation and experiments such as pulsed experiments studies, it has been devised a pulsing system in the injection of the cyclotron. This system combines the use of a chopper, low frequency switch, and a control system based on the new extended EPICS network. This paper details the pulsing system adopted at Arronax, updates and results for various intensity experimental studies performed with alpha and proton beams. Updated work on the simulation of the injection is also shown, specifically towards high intensity future irradiation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP006  
About • paper received ※ 15 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)