A   B   C   D   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   V   W   X   Y   Z  

Katayama, T.

Paper Title Page
MOA1C02 Stochastic Cooling for the HESR at FAIR 30
 
  • H. Stockhorst, R. Maier, D. Prasuhn, R. Stassen
    FZJ, Jülich
  • T. Katayama
    CNS, Saitama
  • L. Thorndahl
    CERN, Geneva
 
  The High-Energy Storage Ring (HESR) of the future International Facility for Antiproton and Ion Research (FAIR) at the GSI in Darmstadt is planned as an anti-proton cooler ring in the momentum range from 1.5 to 15 GeV/c. An important and challenging feature of the new facility is the combination of phase space cooled beams with internal targets. The required beam parameters and intensities are prepared in two operation modes: the high luminosity mode with beam intensities up to 1011 and the high resolution mode with 1010 anti-protons cooled down to a relative momentum spread of only a few 10-5. In addition to electron cooling transverse and longitudinal stochastic cooling are envisaged to accomplish these goals. A detailed numerical and analytical approach to the Fokker- Planck equation for momentum cooling including an internal target has been carried out to demonstrate the stochastic cooling capability. Cooling model predictions are compared with the stochastic cooling performance of the operational cooling system in the cooler synchrotron COSY.  
slides icon Slides  
MOM2C05 Longitudinal Accumulation of Ion Beams in the ESR Supported by Electron Cooling 21
 
  • C. Dimopoulou, B. Franzke, T. Katayama, G. Schreiber, M. Steck
    GSI, Darmstadt
  • D. Möhl
    CERN, Geneva
 
  Recently,two longitudinal beam compression schemes have been successfully tested in the Experimental Storage Ring (ESR) at GSI with a beam of bare Ar ions at 65 MeV/u injected from the synchrotron SIS18. The first employs Barrier Bucket pulses, the second makes use of multiple injections around the unstable fixed point of a sinusoidal RF bucket at h=1. In both cases continuous application of electron cooling maintains the stack and merges it with the freshly injected beam. These experiments provide the proof of principle for the planned fast stacking of Rare Isotope Beams in the New Experimental Storage Ring (NESR) of the FAIR project.  
slides icon Slides  
THAP19 Influences of Space Charge Effect during Ion Accumulation Using Moving Barrier Bucket Cooperated with Beam Cooling 206
 
  • T. Kikuchi, S. Kawata
    Utsunomiya University, Utsunomiya
  • T. Katayama
    GSI, Darmstadt
 
  Space charge effect is important role for stacking of antiprotons and ions in an accumulation ring. The Coulomb force displaces the beam orbits from the designed correct motion. The beam particles kicked out from the ring acceptance by the space charge force are lost. The space charge effect interfere the beam stacking, and the number of the accumulated beam decreases and the emittance is increased. The longitudinal ion storage method by using a moving barrier bucket system with a beam cooling can accumulate the large number of secondary generated beams*. After the multicycle injections of the beam bunch, the stored particles are kicked by the space charge effect of the accumulated beam. Using numerical simulations, we employ the longitudinal particle tracking, which takes into account the barrier bucket voltage, the beam cooling and the space charge effect, for the study of the beam dynamics during the accumulation operations.

*T. Katayama, P. Beller, B. Franzke, I. Nesmiyan, F. Nolden, M. Steck, D. Mohl and T. Kikuchi, AIP Conference Proc. 821 (2005) 196.

 
FRM2C05 Simulation Study of Beam Accumulation with Moving Barrier Buckets and Electron Cooling 238
 
  • T. Katayama, C. Dimopoulou, B. Franzke, M. Steck
    GSI, Darmstadt
  • T. Kikuchi
    Utsunomiya University, Utsunomiya
  • D. Möhl
    CERN, Geneva
 
  An effective ion beam accumulation method in NESR at FAIR project, is investigated with numerical way. The princile of accumulation method is as follows: Ion beam bunch from the collector ring or synchrotron is injected in the longitudinal gap space prepared by moving barrier voltage in NESR. Injected beam becomes instantly coasting beam after switching off the barrier voltage and is migrated with the previously stacked beam. After the momentum spread is well cooled by electron cooling, the barrier voltage is switched on and moved to prepare the empty gap space for the next injection. This process is repeated say 20 times to attain the required intensity. We have investigated this stacking process numerically, including the Intra Beam Scattering effect which might limit the stacking current in the ring. Detailed simulated results will be presented for the NESR case as well as the ESR experimental parameters.  
slides icon Slides