A   B   C   D   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z    

Henderson, S.

Paper Title Page
MOAP02 Recent Beam Commissioning Results from the Spallation Neutron Source 6
 
  • S. Henderson
    ORNL, Oak Ridge, Tennessee
 
  The Spallation Neutron Source accelerator complex consists of a 2.5 MeV H- front-end injector system, a 186 MeV normal-conducting linear accelerator, a 1 GeV superconducting linear accelerator, an accumulator ring and associated beam transport lines. The beam commissioning campaign of the SNS accelerator complex, initiated in 2002, has been performed in seven discrete runs as each successive portion of the accelerator complex has been installed. The final beam commissioning run, in which beam was transported to the liquid mercury target was recently completed. In the course of beam commissioning, most beam performance parameters and beam intensity goals have been achieved at low duty factor. The beam performance and beam dynamics measurements of the linac and ring will be presented.  
TUAX01 Accumulation of High Intensity Beam and First Observations of Instabilities in the SNS Accumulator Ring* 59
 
  • V. V. Danilov, A. V. Aleksandrov, S. Assadi, W. Blokland, S. M. Cousineau, C. Deibele, S. Henderson, J. A. Holmes, M. A. Plum, A. P. Shishlo
    ORNL, Oak Ridge, Tennessee
 
  The Spallation Neutron Source accumulator ring, designed to accumulate up to 1.5·1014 protons per pulse, was commissioned in January of 2006. During the run, over 1.·1014 protons were accumulated in the ring in the natural chromaticity state without any sign of instabilities. The first beam instabilities were observed for a high intensity coasting beam with zero chromaticity. Preliminary analysis of data indicates instabilities related to extraction kicker impedances, and electron-proton instability. Here we review the background theory and design philosophy of the ring, as it relates to instabilities, and compare the pre-commissioning predictions with the experimental measurements.  
TUAX04 Test of a prototype active damping system for the e-p instability at the LANL PSR 94
 
  • R. J. Macek, R. C. McCrady, S. B. Walbridge, J. Zaugg
    LANL, Los Alamos, New Mexico
  • S. Assadi, C. Deibele, S. Henderson, M. A. Plum
    ORNL, Oak Ridge, Tennessee
  • J. M. Byrd
    LBNL, Berkeley, California
  • M. T.F. Pivi
    SLAC, Menlo Park, California
 
  Our collaboration from LANL, SNS, LBNL and SLAC has developed and successfully tested a prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability at the Los Alamos Proton Storage Ring (PSR). This system was able to improve the instability threshold (as measured by the RF buncher voltage) by ~30%. Beam leakage into the gap at lower RF buncher voltage and resulting higher growth rates from more trapped electrons is the likely cause of this limitation. We will describe the system configuration and results of several experimental tests of system performance. We will also discuss our studies and analysis of the factors limiting system performance.  
FRAP03 Summary of Working Group C+G (Part I) 365
 
  • N. V. Mokhov
    Fermilab, Batavia, Illinois
  • K. Hasegawa
    JAEA, Ibaraki-ken
  • S. Henderson
    ORNL, Oak Ridge, Tennessee
  • R. Schmidt
    CERN, Geneva
  • M. Tomizawa
    KEK, Ibaraki
  • K. Wittenburg
    DESY, Hamburg