A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Vinokurov, N.

 
Paper Title Page
TUPMA018 Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets 127
 
  • G. Kulipanov, E. Antokhin, A. Gvozdev, P. V. Logachev, N. A. Mezentsev, V. E. Panchenko, A. V. Philipchenko, Y. V. Rakshun, A. V. Utkin, N. Vinokurov, K. Zolotarev
    BINP SB RAS, Novosibirsk
 
  Synchrotron radiation (SR) with relatively hard spectrum (up to 50 keV) is necessary for realization many modern X-ray analytical methods. These methods can be effectively used in industrial and medical applications, in universities and scientific centers. So, the task of developing of compact source of hard synchrotron radiation is very perspective. Budker INP has a big experience for developing and fabrication of high field superconducting insertion devices for different SR centers. In frame of this activity a superconducting bending magnet with field up to 9.6 T was fabricated for BESSY-II and commissioned in 2004. This magnet also became a prototype for compact hard SR source. A project of such storage ring is under developing in Budker INP now. This design fixed beam energy to 1.2 GeV, ring circumference about 52 m. Estimated horizontal equilibrium emittance will better than 20 nm. This report includes a detailed description of main parameters and magnetic structure of designed storage ring as well as preliminary design of injector system and beamline layout.  
THC3MA04 Status of the Novosibirsk High Power Terahertz FEL 616
 
  • S. V. Miginsky, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, G. Kulipanov, A. V. Kuzmin, A. S. Lakhtychkin, A. N. Matveenko, L. E. Medvedev, L. A. Mironenko, A. D. Oreshkov, A. V. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, N. Vinokurov
    BINP SB RAS, Novosibirsk
  • D. Kayran
    BNL, Upton, Long Island, New York
 
  The first stage of Novosibirsk high-power free-electron laser (FEL) was commissioned in 2003. It is based on the normal conducting CW energy recovery linac. Now the FEL provides electromagnetic radiation in the wavelength range 120–180 micrometers. The average power is 400 W. The minimum measured line width is 0.3%, which is close to the Fourier-transform limit. The assembly of user beamline is in progress, parts of the full-scale machine are manufactured. The latter will operate in the near IR region and will provide higher average power.  
slides icon Slides