Status of the Novosibirsk High Power Terahertz FEL

S.V. Miginsky, N.A. Vinokurov, D.A. Kayran, B.A. Knyazev, E.I. Kolobanov, V. V. Kotenkov, V.V. Kubarev, G.N. Kulipanov, A.V. Kuzmin, A.S. Lakhtychkin, A.N. Matveenko, L.E. Medvedev, L.A. Mironenko, A.D. Oreshkov, V.K. Ovchar, V.M. Popik, T.V. Salikova, S.S. Serednyakov, A.N. Skrinsky, O.A. Shevchenko, M.A. Scheglov

Budker INP, Novosibirsk, Russia

FEL based on energy recovery accelerator

injector, 2 - accelerating RF structure, 3 - 180-degree bends,
 undulator, 5 - beam dump, 6 - mirrors of optical resonator

First stage: ERL and submillimeter (THz) FEL

ERL and FEL

Features of RF system

- Low frequency (180 MHz)
- Normal-conducting uncoupled RF cavities
- CW operation

Advantages

- High threshold currents for instabilities
- Operation with long electron bunches (for narrow FEL linewidth)
- Large longitudinal acceptance (good for operation with large energy spread of used beam)
- Moderate tolerances for orbit lengths and longitudinal dispersion

A pair of cavities (accelerating section) on a support frame

Main parameters of the cavity

(for the fundamental TM_{010} mode)

Resonant frequency, MHz	\mathbf{f}_0	180,4
Frequency tuning range, kHz	Δf_0	320
Quality factor	Q	40000
Shunt impedance, MOhm	$R=U^2/2P$	5,3
Characteristic impedance, Ohm	ρ=R/Q	133,5
Operating gap voltage amplitude, MV	U	0-1.1
Power dissipation in the cavity, kW, at U=1100 kV	Р	115
Input coupler power capability, kW (<i>tested</i> , <i>limited by available power</i>)	P _{in}	400

2 MeV injector

2 MeV injector parameters

 Bunch repetition rate, MHz 	up to 22.5
♦ Charge per bunch, nC	2
 Start bunch length, ns 	1.2
♦ Final bunch length, ns	0.1
♦ Final energy, MeV	2

Bent and injection beamline

First-stage ERL: machine parameters

 Bunch repetition rate, MHz 	11.2
♦ Average electron current, mA	20
♦ Maximum energy, MeV	12
♦ Bunch length, ps	100
♦ Normalized emittance, mm*mrad	30

Undulator parameters (one section)

♦Length, m	4
♦Period, mm	120
 Number of periods 	32
♦Gap, mm	80
♦ Undulator parameter K	0 - 1.2

Undulators and accelerating RF cavities

Optical resonator and transmission line

Beamline for radiation transport

Beamline

Beamline outlets

Optical beam sizes (mm) vs. distance along the beamline (m)

Experimental stations

Free electron laser Parameters

♦ Wavelength, mm	0.12-0.18
♦ Pulse duration, FWHM, ps	70
♦ Pulse energy, mJ	0.04
◆ Repetition rate, MHz	5.6 or 11.2
♦ Average power, kW	0.4
 Minimum relative linewidth, FWHM 	$3 \cdot 10^{-3}$

THz images

High average power of radiation (up to 400 W) in combination with high peak power (up to 1 MW) enables performing high power density experiments

Laser beam focused in the atmosphere with a parabolic mirror (f=1.0 cm) ignites a continuous optical discharge

Unfocused laser beam drills an opening in 50-mm plexiglas slab within three minutes (ablation without burning)

These fenomena can be used for many fundamental and applied experiments (plasma physics, aerodynamics, chemistry, material processing and modification, biology...)

Ultra-soft laser ablation of DNA

Full-scale energy recovery accelerator and FEL

A full-scale 4-track energy recovery accelerator uses the same accelerating structure as the 1st stage ERL, but, in contrast to the latter, it is placed in the horizontal plane. Thus, the possibility to run the old FEL remains.

The choice of operation regime at one of two machines and one of three FEL will be achived by simple reswitching of the bending magnets.

Full-scale FEL parameters

Electron beam energy, MeV	40
Number of orbits	4
Maximum bunch repetition rate, MHz	90
Beam average current, mA	150
Wavelength range, micron	5-240
Maximum output power, kW	10

Scheme of the electron outcoupling for the second stage of the Novosibirsk FEL

1 and 2 – mirrors of optical resonator; 3, 4, and 5 – undulators; 6 – 45-degree mirror; 7 – radiation output.

Conclusions

- •First stage machine operates stably.
- •Several user stations are in operation.
- •Some optical experiments were performed.
- •The work to increase the average power is continuing.
- •The manufacturing of the second stage of FEL is in progress. Commissioning is expected in 2007.