Author: Therasse, M.
Paper Title Page
TUP073 Niobium Coatings for the HIE-ISOLDE QWR Superconducting Accelerating Cavities 611
 
  • N.M. Jecklin, S. Calatroni, L.M.A. Ferreira, I. Mondino, A. Sublet, M. Therasse, W. Venturini Delsolaro
    CERN, Geneva, Switzerland
  • B. Delaup
    EPFL, Lausanne, Switzerland
 
  The HIE-ISOLDE project is the upgrade of the existing ISOLDE facility at CERN, which is dedicated to the production of a large variety of radioactive ion beams for nuclear physics experiments. A new linac made of 20 β=10.3% and 12 β=6.3% QWR superconducting accelerating cavities at 101 MHz will be built, and in a first phase two cryomodules of 5 high-beta cavities each are scheduled to accelerate first beams in 2015. The cavities are made of a copper substrate, with a sputter-coated superconductive niobium layer, operated at 4.5 K with an accelerating field of 6 MV/m at 10W RF losses (Q0=4.5e8) In this paper we will discuss the baseline surface treatment and coating procedure which allows obtaining the required performance, as well as the steps undertaken in order to prepare series production of the required number of cavities guaranteeing their quality and functionality.  
 
TUP076 Preliminary Results of Nb Thin Film Coating for HIE-ISOLDE SRF Cavities Obtained by Magnetron Sputtering 620
 
  • A. Sublet, I. Aviles Santillana, S. Calatroni, A. D'Elia, N.M. Jecklin, I. Mondino, S. Prunet, M. Therasse, W. Venturini Delsolaro, P. Zhang
    CERN, Geneva, Switzerland
 
  Funding: Work supported in part by a Marie Curie Early Initial Training Network Fellowship of the European Community's 7th Programme under contract number PITN-GA-2010-264330-CATHI.
In the context of the HIE-ISOLDE upgrade at CERN, several new facilities for the niobium sputter coating of QWR-type superconducting RF accelerating cavities have been developed, built, and successfully operated. In order to further optimize the production process of these cavities the magnetron sputtering technique has been further investigated and continued as an alternative to the already successfully operational DC bias diode sputtering method. The purpose of this poster is to present the results obtained with this technique. The Nb thickness profile along the cavity and its correlation with the electro-magnetic field distribution inside the cavity are discussed. Film structure, morphology and Residual Resistivity Ratio (RRR) will be considered as well and compared with films obtained by DC bias diode sputtering. Finally these results will be compared with RF characterization and measurement of a production-like magnetron-coated cavity.
 
 
WEIOA03 Nb Sputtered Quarter Wave Resonators for the HIE-ISOLDE 767
 
  • W. Venturini Delsolaro, S. Calatroni, A. D'Elia, B. Delaup, N.M. Jecklin, Y. Kadi, P. Maesen, I. Mondino, A. Sublet, M. Therasse
    CERN, Geneva, Switzerland
  • A. D'Elia
    UMAN, Manchester, United Kingdom
  • D.A. Franco Lespinasse, G. Keppel, V. Palmieri, S. Stark
    INFN/LNL, Legnaro (PD), Italy
 
  The HIE-ISOLDE superconducting linac will be based on quarter wave resonators (QWRs), made by Niobium sputtering on Copper. The operating frequency at 4.5 K is 101.28 MHz and the required performance for the high beta cavity is 6 MV/m accelerating field for 10 W maximum power dissipation. These challenging specifications were recently met at CERN at the end of a vigorous development program. The paper reports on the progress of the cavity RF performance with the evolution of the sputtering process; it equally illustrates the parallel R&D which is ongoing at CERN and at INFN in the quest for even higher performances.  
slides icon Slides WEIOA03 [14.564 MB]  
 
FRIOB04 CERN Developments for 704 MHz Superconducting Cavities 1198
 
  • O. Capatina, G. Arnau-Izquierdo, S. Atieh, I. Aviles Santillana, R. Bonomi, S. Calatroni, J.K. Chambrillon, R. Garoby, F. Gerigk, M. Guinchard, T. Junginger, M. Malabaila, L. Marques Antunes Ferreira, S. Mikulas, V. Parma, T. Renaglia, K.M. Schirm, T. Tardy, M. Therasse, A. Vacca, N. Valverde Alonso, A. Vande Craen
    CERN, Geneva, Switzerland
  • F. Pillon
    Kraftanlagen Nukleartechnik GmbH, Heidelberg, Germany
 
  The Superconducting Proton Linac (SPL) is an R&D effort coordinated by CERN in partnership with other international laboratories. It is aiming at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art RF superconducting technology, which would serve as a driver in new physics facilities for neutrinos and/or Radioactive Ion Beam (RIB). Amongst the main objectives of this R&D effort, is the development of 704 MHz bulk niobium β=1 elliptical cavities, operating at 2 K with a maximum accelerating gradient of 25 MV/m, and the testing of a string of cavities integrated in a machine-type cryomodule. The cavity together with its helium tank had to be carefully designed in coherence with the innovative design of the cryomodule. New fabrication methods have also been explored. Five such niobium cavities and two copper cavities are in fabrication. The key design aspects are discussed, the results of the alternative fabrication methods presented and the status of the cavity manufacturing and surface preparation is detailed.  
slides icon Slides FRIOB04 [8.677 MB]