Paper | Title | Page |
---|---|---|
MOP014 | Cold Tests of SSR1 Resonators for PXIE | 112 |
|
||
Fermilab is currently building the Project X Injector experiment (PXIE). PXIE linac will accelerate 1 mA H− beam up to 30 MeV and serve as a testbed for validation of Project X concepts and mitigation of technical risks. A cryomodule of eight superconducting RF Single Spoke Resonators of type 1 (SSR1) cavities operating at 325 MHz is an integral part of PXIE. Ten SSR1 cavities were manufactured in industry and delivered to Fermilab. In this paper we discuss surface processing and tests of bare SSR1 cavities at the Fermilab Vertical Test Stand (VTS). We report on the measured performance parameters of nine cavities achieved during tests. | ||
MOP015 | Status of the SRF Development for the Project X | 117 |
|
||
Project X is a high intensity proton facility being developed to support a world-leading program of Intensity Frontier physics over the next two decades at Fermilab. The proposed facility is based on the SRF technology and consists of two linacs: CW linac to accelerate beam from 2.1 MeV to 3 GeV and pulsed linac accelerate 5% of the beam up to 8 GeV. In a CW linac five families of SC cavities are used: half-wave resonators (162.5 MHz); single-spoke cavities: SSR1 and SSR2 (325 MHz) and elliptical 5-cell β=0.6 and β=0.9 cavities (650 MHz). Pulsed 3-8 GeV linac linac are based on 9-cell 1.3 GHz cavities. In the paper the basic requirements and the status of development of SC accelerating cavities, auxiliaries (couplers, tuners, etc.) and cryomodules are presented as well as technology challenges caused by their specifics. | ||
TUP050 |
R&D Program for 650 MHz Niobium Cavities for Project X | |
|
||
Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. We report the first test results of several 650 MHz single cell niobium cavities processed at Fermilab. The target for the 5-cell 650 MHz cavities for Project X is CW operation at magnetic peak field ~ 60-70 mT, making high quality factors at medium accelerating fields the main goal of the surface processing R&D. We will discuss how the performance vary with the different surface processing and parameters/criteria of choice for the final surface preparation sequence. |
||
TUP100 | Medium Field Q-Slope Studies in High Frequency Cavities | 705 |
|
||
A phenomenon of Medium Field Q-Slope (MFQS) in superconducting RF cavities is of high importance because it occurs in the field range (5-20MV/m) that includes designed operation fields of future CW accelerators. MFQS impacts resistive losses in the cavity and, consequently, directly affects accelerator operation costs. We present studies of MFQS based on vertical test data for 1.3GHz nine-cell cavities and make comparisons of vertical test data from different laboratories. | ||
THP070 | Analysis of High Order Modes in 1.3 GHz CW SRF Electron Linac for a Light Source | 1085 |
|
||
Design of a Light Source (LS) based on the continuous wave superconducting RF (CW SRF) electron linac is currently underway. This facility will provide soft coherent X-ray radiation for a broad spectrum of basic research applications. Quality of the X-ray laser radiation is affected by the electron beam parameters such as the stability of the transverse beam position and longitudinal and transverse beam emittances. High order modes (HOMs) excited in the SRF structures by a passing beam may deteriorate the beam quality and affect the beam stability. Deposition of HOM energy in the walls of SRF cavities adds to the heat load of the cryogenic system and leads to the increased cost of building and operation of the linac. In this paper we evaluate effects of HOMs in an LS CW SRF linac based on Tesla-type 9-cell 1.3 GHz cavities. We analyze non-coherent losses and resonance excitation of HOMs. We estimate heat load due to the very high frequency HOMs. We study influence of the HOMs on the transverse beam dynamics. | ||
FRIOB02 | Development and Performance of 325 MHz Single Spoke Resonators for Project X | 1187 |
|
||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. Two types of single spoke resonators will be utilized for beam-acceleration in the low energy part of the Project X linac. SSR1 and SSR2 operate at 325 MHz and at an optimal beta of 0.22 and 0.51 respectively. After the initial phase of prototyping, a production run of 10 SSR1 resonators was recently completed in US industry. The qualification of this group of resonators in the Fermilab VTS is proceeding successfully and nearly complete. The first qualified resonator has been outfitted with a Stainless Steel helium vessel. Preliminary test results for the first jacketed SSR1 are presented. The first RF power couplers were ordered, the design of the double-lever tuning mechanism is almost complete. |
||
![]() |
Slides FRIOB02 [8.800 MB] | |