Paper | Title | Page |
---|---|---|
TUP073 | Niobium Coatings for the HIE-ISOLDE QWR Superconducting Accelerating Cavities | 611 |
|
||
The HIE-ISOLDE project is the upgrade of the existing ISOLDE facility at CERN, which is dedicated to the production of a large variety of radioactive ion beams for nuclear physics experiments. A new linac made of 20 β=10.3% and 12 β=6.3% QWR superconducting accelerating cavities at 101 MHz will be built, and in a first phase two cryomodules of 5 high-beta cavities each are scheduled to accelerate first beams in 2015. The cavities are made of a copper substrate, with a sputter-coated superconductive niobium layer, operated at 4.5 K with an accelerating field of 6 MV/m at 10W RF losses (Q0=4.5e8) In this paper we will discuss the baseline surface treatment and coating procedure which allows obtaining the required performance, as well as the steps undertaken in order to prepare series production of the required number of cavities guaranteeing their quality and functionality. | ||
TUP076 | Preliminary Results of Nb Thin Film Coating for HIE-ISOLDE SRF Cavities Obtained by Magnetron Sputtering | 620 |
|
||
Funding: Work supported in part by a Marie Curie Early Initial Training Network Fellowship of the European Community's 7th Programme under contract number PITN-GA-2010-264330-CATHI. In the context of the HIE-ISOLDE upgrade at CERN, several new facilities for the niobium sputter coating of QWR-type superconducting RF accelerating cavities have been developed, built, and successfully operated. In order to further optimize the production process of these cavities the magnetron sputtering technique has been further investigated and continued as an alternative to the already successfully operational DC bias diode sputtering method. The purpose of this poster is to present the results obtained with this technique. The Nb thickness profile along the cavity and its correlation with the electro-magnetic field distribution inside the cavity are discussed. Film structure, morphology and Residual Resistivity Ratio (RRR) will be considered as well and compared with films obtained by DC bias diode sputtering. Finally these results will be compared with RF characterization and measurement of a production-like magnetron-coated cavity. |
||
TUP077 | Thin Film Coating Optimization for HIE-ISOLDE SRF Cavities: Coating Parameters Study and Film Characterization | 623 |
|
||
Funding: Work supported in part by a Marie Curie Early Initial Training Network Fellowship of the European Community's 7th Programme under contract number PITN-GA-2010-264330-CATHI. The HIE-ISOLDE project at CERN requires the production of 32 cavities in order to increase the energy of the beam. The Quarter Wave Resonators (QWRs) cavities of complex cylindrical geometry (0.3m diameter and 0.8m height) are made of copper and are coated with a thin superconducting layer of niobium. In the present phase of the project the aim is to obtain a niobium film, using the DC bias diode sputtering technique, providing adequate high quality factor of the cavities and to ensure reproducibility for the future series production. After an overview of the explored coating parameters (hardware and process), the resulting film characteristics, thickness profile along the cavity, structure and morphology (SEM measurements) and Residual Resistivity Ratio (RRR) of the Nb film will be shown. The effect of the sputtering gas process pressure and configuration of the coating setup will be highlighted. |
||
WEIOA03 | Nb Sputtered Quarter Wave Resonators for the HIE-ISOLDE | 767 |
|
||
The HIE-ISOLDE superconducting linac will be based on quarter wave resonators (QWRs), made by Niobium sputtering on Copper. The operating frequency at 4.5 K is 101.28 MHz and the required performance for the high beta cavity is 6 MV/m accelerating field for 10 W maximum power dissipation. These challenging specifications were recently met at CERN at the end of a vigorous development program. The paper reports on the progress of the cavity RF performance with the evolution of the sputtering process; it equally illustrates the parallel R&D which is ongoing at CERN and at INFN in the quest for even higher performances. | ||
![]() |
Slides WEIOA03 [14.564 MB] | |