Paper | Title | Page |
---|---|---|
THP052 | Cornell’s Beam Line Higher Order Mode Absorbers | 1027 |
|
||
Efficient damping of the higher-order modes (HOMs) of the superconducting cavities is essential for the proposed energy recovery linac at Cornell that aims for high beam currents and short bunches. Designing these HOM beamline absorbers has been a long endeavor, sometimes including disappointing results. We will review the design, the findings on the prototype and the final choices made for the 7 HOM absorbers being built for the main linac cryomodule (MLC) prototype. | ||
MOP086 | Integration, Commissioning and Cryogenics Performance of the ERL Cryomodule Installed on ALICE-ERL Facility at STFC Daresbury Laboratory, UK | 349 |
|
||
On successful assembly and preliminary testing of an optimised SRF cryomodule for application on ERL accelerators, which is being developed through an international collaboration the cryomodule has been installed on the 35 MeV ALICE (Accelerators and Lasers in Combined Experiments) Energy Recovery Linac (ERL) facility at STFC Daresbury Laboratory. Existing cryogenic infrastructure has a capacity to deliver approximately 120 W cooling power at 2 K, but the HOM (Higher Order Mode) absorbers, the thermal intercepts for the high power RF couplers and the radiation shield in the cryomodule are designed to be cooled (to 5 K and 80 K) with gaseous helium instead of liquid nitrogen. As a result the cryogenic infrastructure for ALICE had to be modified to meet these additional requirements. In this paper we describe our experience with the process of integration and the cryogenic commissioning, and present some initial results. | ||
THIOB02 | High Q Cavities for the Cornell ERL Main Linac | 844 |
|
||
While SRF research for linear colliders was focused on achieving high gradients, Cornell’s proposal for an energy recovery linac (ERL) demanded for low cw losses. Starting several years ago, a high-Q R&D phase was launched that led to remarkable results recently: A fully dressed cavity (7 cells, 1.3 GHz) with side-mounted input coupler and beamline HOM absorbers achieved a Q of 3.5·1010 ((16 MV/m, 1.8 K). This talk will review the staged approach we have chosen in testing a single cavity in a horizontal short cryomodule (HTC), report results on each step and conclude on our findings about preserving high Q from vertical testing. We also discuss the production of six additional cavities as we progress toward constructing a full 6-cavity cryomodule as a prototype for Cornell’s main linac module | ||
![]() |
Slides THIOB02 [8.378 MB] | |
THP007 | Cornell's ERL Cavity Production | 909 |
|
||
The phase 1 R&D program launched in preparation to building a 5 GeV Energy Recovery Linac (ERL) at Cornell, a full main linac cryomodule is currently built, housing six 7-cell cavities. In order to control the beam break-up limit, the shape of the cavity was highly optimized and stringent tolerances on the cavity production were targeted. We will report on the details of the cavity production, the accuracy of the cups forming the individual cells, the trimming procedure for the dumbbells, the cavity tuning and final accuracy of the cavity concerning field flatness, resonant frequency and overall length within this small series production. | ||
THP073 | HOM Dampers and Waveguide for the Short Pulse X-Ray (SPX) Project | 1098 |
|
||
Funding: Work supported by U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. The production of HOM dampers for the superconducting SPX cavities has been undertaken at the Advanced Photon Source. The dampers are vacuum compatible loads that utilize a four wedge design in WR284 rectangular waveguide. The rf lossy material consists of hexoloy silicon carbide (SiC) due to its suitable mechanical and electrical material properties. Issues regarding manufacturing consist of initial SiC material failure due to fabrication stresses as well as substandard soldering bonds of the SiC to the copper damper bodies. In addition, integration into the cryomodule consists of rf, thermal, and mechanical design considerations of the dampers and the waveguide transmission lines. An analysis of the manufacturing and integration issues and remedies are discussed further in this paper. |
||