Author: Nassiri, A.
Paper Title Page
MOP009 A Summary of the Advanced Photon Source (APS) Short Pulse X-ray (SPX) R&D Accomplishments 92
 
  • A. Nassiri, N.D. Arnold, T.G. Berenc, M. Borland, B. Brajuskovic, D.J. Bromberek, J. Carwardine, G. Decker, L. Emery, J.D. Fuerst, J.P. Holzbauer, D. Horan, J.A. Kaluzny, J.S. Kerby, F. Lenkszus, R.M. Lill, H. Ma, V. Sajaev, B.K. Stillwell, G.J. Waldschmidt, M. White, G. Wu, Y. Yang, A. Zholents
    ANL, Argonne, USA
  • J.M. Byrd, L.R. Doolittle, G. Huang
    LBNL, Berkeley, California, USA
  • P. Dhakal, J. Henry, J.D. Mammosser, J. Matalevich, R.A. Rimmer, H. Wang, K.M. Wilson
    JLAB, Newport News, Virginia, USA
  • Z. Li, L. Xiao
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06H11357.
The Advanced Photon Source Upgrade Project (APS-U) at Argonne will include generation of short-pulse x-rays based on Zholents’ [1] deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. Since early 2012, in collaboration with Jefferson National Laboratory, we have made significant progress prototyping and testing a number of single-cell deflecting cavities. We have designed, prototyped, and tested silicon carbide as damping material for higher-order-mode (HOM) dampers, which are broadband to handle the HOM power across the frequency spectrum produced by the APS beam. In collaboration with Lawrence Berkeley National Laboratory, we have developing a state-of-the-art timing and synchronization system for distributing stable rf signals over optical fiber capable of achieving tens of femtoseconds phase drift and jitter. Collaboration with the Advanced Computations Department at Stanford Linear Accelerator Center is looking into simulations of complex, multi- cavity geometries. This contribution provides a progress report on the current R&D status of the SPX project.
[1] A. Zholents et al., NIM A 425, 385 (1999).
 
 
MOP077 Cryomodule Component Development for the APS Upgrade Short Pulse X-Ray Project 314
 
  • J.P. Holzbauer, J.D. Fuerst, A. Nassiri, Y. Shiroyanagi, B.K. Stillwell, G.J. Waldschmidt, G. Wu
    ANL, Argonne, USA
  • G. Cheng, J. Henry, J.D. Mammosser, J. Matalevich, J.P. Preble, R.A. Rimmer, H. Wang, K.M. Wilson, M. Wiseman, S. Yang
    JLAB, Newport News, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CHI1357 at ANL and under U.S. DOE Contract No. DE-AC05-06OR23177 at Jefferson Lab.
The short pulse x-ray (SPX) part of the Advanced Photon Source Upgrade calls for the installation of a two-cavity cryomodule in the APS ring to study cavity-beam interaction, including HOM damping and cavity timing and synchronization. Design of this cryomodule is underway at Jefferson Lab in collaboration with the APS Upgrade team at ANL. The cryomodule design faces several challenges including tight spacing to fit in the APS ring, a complex set of cavity waveguides including HOM waveguides and dampers enclosed in the insulating vacuum space, and tight alignment tolerances due to the APS high beam-current (up to 150 mA). Given these constraints, special focus has been put on modifying existing CEBAF-style designs, including a cavity tuner and alignment scheme, to accommodate these challenges. The thermal design has also required extensive work including coupled thermal-mechanical simulations to determine the effects of cool-down on both alignment and waveguides. This work will be presented and discussed in this paper.
 
 
MOP078 Horizontal Testing of a Dressed Deflecting Mode Cavity for the APS Upgrade Short Pulse X-Ray Project 321
 
  • J.P. Holzbauer, N.D. Arnold, T.G. Berenc, D.J. Bromberek, J. Carwardine, N.P. Di Monte, J.D. Fuerst, A.E. Grelick, D. Horan, J.A. Kaluzny, J.W. Lang, H. Ma, T.L. Mann, D.A. Meyer, M.E. Middendorf, A. Nassiri, Y. Shiroyanagi, J.H. Vacca, G.J. Waldschmidt, R.D. Wright, G. Wu, Y. Yang, A. Zholents
    ANL, Argonne, USA
  • E.R. Harms, W. Schappert
    Fermilab, Batavia, USA
  • J.D. Mammosser
    JLAB, Newport News, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CHI1357.
The short pulse x-ray (SPX) part of the Advanced Photon Source (APS) Upgrade is an effort to enhance time-resolved experiments on a few-ps-scale at the APS. The goal of SPX is the generation of short pulses of x-rays for pump-probe time-resolved capability using superconducting rf (SRF) deflecting cavities*. These cavities will create a correlation between longitudinal position in the electron bunch and vertical momentum**. The light produced by this bunch can be passed through a slit to produce a pulse of light much shorter (1-2 ps instead of 100 ps) than the bunch length at reduced flux. An SPX cavity has been tested with a helium vessel and tuner. In addition to studying rf performance with more realistic cooling, this test allowed integration and operation of many systems designed for SPX cryomodule in-ring operation. These systems included an APS-constructed 5 kW, 2.815 GHz amplifier, a digital low-level rf controller system designed and fabricated in collaboration with LBNL, a cavity tuner, and instrumentation systems designed for the existing APS infrastructure. Cavity performance and subsystem performance will be reported and discussed in this paper.
* A. Zholents et al., NIM A 425, 385 (1999).
** A. Nassiri et al., “Status of the Short-Pulse X-Ray Project at the Advanced Photon Source,” IPAC 2012, New Orleans, LA, May 2012.
 
 
TUP055 Electropolishing of the ANL Deflecting Cavity for the APS Upgrade 544
 
  • Y. Yang, J.D. Fuerst, J.P. Holzbauer, J.A. Kaluzny, A. Nassiri, G. Wu
    ANL, Argonne, USA
  • A.C. Crawford
    Fermilab, Batavia, USA
  • P. Dhakal, J.D. Mammosser, H. Wang
    JLAB, Newport News, Virginia, USA
  • Y. Yang
    TUB, Beijing, People's Republic of China
 
  Studies on the application of electropolishing (EP) of the ANL superconducting deflecting cavity have shown promising results. This cavity geometry is a squashed single-cell cavity with Y-end group waveguide as well as on-cell LOM damper. The cavity works at TM110-like deflecting mode, in which the iris between the cavity cell and the Y-end group is the highest magnetic field region. Before EP, the cavity had been chemically etched (BCP) several times. Forty-um EP processing was performed on one Mark II prototype deflecting cavity at Fermilab. No mild baking was performed before the cavity vertical test. The test showed that the low-field Q had improved from 2·109 to 3·109 and the high-field Q-slope had been successfully removed. The quench limit was slightly improved from 106 mT to 113 mT. Fast T-mapping had detected a significant decrease of local temperature rise in the cavity iris. Optical inspection before EP found a lot of grooves around the iris, which might be related to the gas bubbles generated during BCP. This suggests that horizontal EP is a promising processing technique to remove the high-field Q-slope and improve the deflecting cavity performance.  
 
TUP086 Cryogen-Free RF System Studies Using Cryocooler-Cooled Magnesium Diboride-Coated Copper RF Cavities 663
 
  • A. Nassiri, R. Kustom, Th. Proslier
    ANL, Argonne, USA
  • T. Tan, X. Xi
    TU, Philadelphia, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06H11357.
Studies on the application of magnesium diboride(MgB2)high-Tc superconducting films have shown promise for use with rf cavities. Studies are directed towards applying the films to niobium cavities with the goal to increase accelerating gradients to greater than 50 MeV/m. However, studies also have shown that MgB2 films, with a critical temperature over four times higher than Nb, have surface resistances equal, or nearly equal, at 8-12 K, to what is achieved with niobium at 4 K. It might be possible to design and operate cavity systems in the 8-12K temperature range with cryocoolers that are currently available. The current cryocoolers can remove as much as 20 watts per unit in the range of 8-12K. This suggests that helium-free superconducting RF systems are possible for future light sources and possible industrial and medical linear accelerators. Our current research is directed towards depositing MgB2 films onto copper, or other high thermal conductivity metal, substrates which would allow future cavities to be fabricated as film coated copper structures. We have started atomic layer deposition and Hybrid chemical vapor deposition studies of MgB2 on 2-inch copper coupons.
 
 
THP073 HOM Dampers and Waveguide for the Short Pulse X-Ray (SPX) Project 1098
 
  • G.J. Waldschmidt, B. Brajuskovic, D.J. Bromberek, J.D. Fuerst, J.P. Holzbauer, A. Nassiri, Y. Shiroyanagi, G. Wu
    ANL, Argonne, USA
  • V.D. Shemelin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
The production of HOM dampers for the superconducting SPX cavities has been undertaken at the Advanced Photon Source. The dampers are vacuum compatible loads that utilize a four wedge design in WR284 rectangular waveguide. The rf lossy material consists of hexoloy silicon carbide (SiC) due to its suitable mechanical and electrical material properties. Issues regarding manufacturing consist of initial SiC material failure due to fabrication stresses as well as substandard soldering bonds of the SiC to the copper damper bodies. In addition, integration into the cryomodule consists of rf, thermal, and mechanical design considerations of the dampers and the waveguide transmission lines. An analysis of the manufacturing and integration issues and remedies are discussed further in this paper.
 
 
THP082 Fast Detuning Experiment on an SRF Cavity 1118
 
  • G. Wu, N.D. Arnold, T.G. Berenc, J. Carwardine, A.R. Cours, J.D. Fuerst, J.P. Holzbauer, D. Horan, A. Nassiri
    ANL, Argonne, USA
  • J. Matalevich
    JLAB, Newport News, Virginia, USA
  • Y. Yang
    TUB, Beijing, People's Republic of China
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Short Pulse X-ray beamlines occupy a limited number of sectors after the APS Upgrade. The majority of APS users will not participate in the SPX experiment. As user operation requires the best beam availability, it is important that any SPX-related circuit trip that requires the extinguishment of rf power should not affect overall beam availability. As such, it is necessary to de-couple the SRF cavities from beam when such an rf trip happens. An example of such trip is that the rf window arcing has to be stopped within 1 ms, before serious damage occurs to the ceramic. As the rf amplifier shuts down the rf output, beam-driven cavity power has to be reduced, too. If cavity can be detuned fast enough and far enough away from its resonance, the beam does not have to be aborted. The SPX0 tuner is equipped with a fast response Piezo actuator in the cavity tuner stack. Such a Piezo may be able to provide a quick jolt of the cavity to provide detuning capability for the purpose of maintaining the beam in the event of an rf trip. In this paper, we describe the experimental setup and results obtained, and discuss its effectiveness for beam operation.
 
 
FRIOA03 Fabrication and Testing of Deflecting Cavities for APS 1170
 
  • J.D. Mammosser
    JLab, Newport News, Virginia, USA
  • P. Dhakal, J. Henry, R.A. Rimmer, H. Wang, K.M. Wilson
    JLAB, Newport News, Virginia, USA
  • J.F. Fuerst, J.P. Holzbauer, J.S. Kerby, A. Nassiri, G.J. Waldschmidt, G. Wu, Y. Yang
    ANL, Argonne, USA
  • F. He
    PKU, Beijing, People's Republic of China
  • Z. Li
    SLAC, Menlo Park, California, USA
 
  Abstract Jefferson Lab in Newport News, Virginia, in collaboration with Argonne National Laboratory, Argonne, Il, has fabricated and tested three production, 2.815 GHz crab cavities for Argonne’s Short-Pulse X-ray project. These cavities are unique in that the cavity and waveguides were milled from bulk large grain niobium ingot material directly from 3D CAD files. No forming of sub components was used with the exception of the beam-pipes. The cavity and helium vessel design along with the RF performance requirements makes this project extremely challenging for fabrication. Production challenges and fabrication techniques as well as testing results will be discussed in this paper.  
slides icon Slides FRIOA03 [22.677 MB]