Author: Kaufman, J.J.
Paper Title Page
TUP048 Preparations and VT Results of ERL7-cell at Cornell 521
 
  • F. Furuta, B. Bullock, R.G. Eichhorn, B. Elmore, A. Ganshin, G.M. Ge, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  We have fabricated 7 ERL 7-cell cavities for Cornell ERL project. 4 nu-stiffened and 3-stiffened cavities have been fabricated in house so far. Specification values of our 7-cell is 16.2MV/m with Qo of 2.0·1010 at 1.8K. In this report, we will describe our surface treatments recipe which is based on BCP and the results of vertical tests of these 7-cell cavities.  
 
TUP058 Recent Findings on Nitrogen Treated Niobium 558
 
  • R.G. Eichhorn, A. Ganshin, A. Holmes, J.J. Kaufman, S.R. Markham, S. Posen, E.N. Smith
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Recent findings on Nitrogen treated Niobiums Based on recent findings at Fermilab, Cornell investigated the role of Nitrogen being present during the cavity hydrogen degassing process. We treated several samples at different temperatures being exposed to nitrogen between 10 minutes and 3 hours at pressures around 15 mbar as well as single cell cavities. This contribution will summarize our findings from surface analysis, Tc measurements and cavity Qs, addressing the question, if such a process can form Niobium-Nitride.  
 
TUP059 TM-Furnace Qualification at Cornell 561
 
  • F. Furuta, B. Bullock, R.G. Eichhorn, A. Ganshin, G.M. Ge, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Cornell's SRF group had new vacuum furnace for hydrogen degassing of SRF Nb cavity. Systematic study and testing have been done to qualify this new furnace. We will report the results of those qualification tests include cavity bake and vertical testing.  
 
THIOB02 High Q Cavities for the Cornell ERL Main Linac 844
 
  • R.G. Eichhorn, B. Bullock, B. Clasby, B. Elmore, F. Furuta, A. Ganshin, G.M. Ge, D. Gonnella, D.L. Hall, Y. He, K.M.V. Ho, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, T.I. O'Connel, S. Posen, P. Quigley, J. Sears, V.D. Shemelin, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  While SRF research for linear colliders was focused on achieving high gradients, Cornell’s proposal for an energy recovery linac (ERL) demanded for low cw losses. Starting several years ago, a high-Q R&D phase was launched that led to remarkable results recently: A fully dressed cavity (7 cells, 1.3 GHz) with side-mounted input coupler and beamline HOM absorbers achieved a Q of 3.5·1010 ((16 MV/m, 1.8 K). This talk will review the staged approach we have chosen in testing a single cavity in a horizontal short cryomodule (HTC), report results on each step and conclude on our findings about preserving high Q from vertical testing. We also discuss the production of six additional cavities as we progress toward constructing a full 6-cavity cryomodule as a prototype for Cornell’s main linac module  
slides icon Slides THIOB02 [8.378 MB]  
 
THP007 Cornell's ERL Cavity Production 909
 
  • R.G. Eichhorn, B. Bullock, B. Clasby, B. Elmore, F. Furuta, G.H. Hoffstaetter, J.J. Kaufman, B.M. Kilpatrick, J. Sears, V.D. Shemelin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • T. Kürzeder
    TU Darmstadt, Darmstadt, Germany
 
  The phase 1 R&D program launched in preparation to building a 5 GeV Energy Recovery Linac (ERL) at Cornell, a full main linac cryomodule is currently built, housing six 7-cell cavities. In order to control the beam break-up limit, the shape of the cavity was highly optimized and stringent tolerances on the cavity production were targeted. We will report on the details of the cavity production, the accuracy of the cups forming the individual cells, the trimming procedure for the dumbbells, the cavity tuning and final accuracy of the cavity concerning field flatness, resonant frequency and overall length within this small series production.