Paper |
Title |
Page |
MOP062 |
Production of 500 MHz SRF Modules the KEKB-type for Taiwan Photon Source |
263 |
|
- Ch. Wang, L.-H. Chang, M.H. Chang, L.J. Chen, F.-T. Chung, M.-C. Lin, Y.-H. Lin, Z.K. Liu, C.H. Lo, M.H. Tsai, T.-T. Yang, M.-S. Yeh, T.-C. Yu
NSRRC, Hsinchu, Taiwan
- T. Furuya, K. Hara, T. Honma, A. Kabe, Y. Kojima, S. Mitsunobu, Y. Morita, H. Nakai, K. Nakanishi, M. Nishiwaki, S. Takano
KEK, Ibaraki, Japan
- F. Inoue, K. Sennyu, T. Yanagisawa
MHI, Hiroshima, Japan
|
|
|
The KEKB-type single-cell 500-MHz superconducting radio frequency (SRF) modules have been selected to power the 3 GeV, 500 mA, storage ring of the constructing Taiwan Photon Source (TPS) at National Synchrotron Radiation Research Center (NSRRC). The design target is to routinely deliver RF forward power up to 300 kW, CW, to single SRF module with highly reliable operation. Three sets of SRF modules have been successfully produced under a tight collaboration with High Energy Accelerator Research Organization (KEK) and Mitsubishi Heavy Industries Ltd. (MHI), after obtaining the technology transfer from KEK. MHI is responsible for the mechanical fabrication and cryo-module assembly, KEK for the surface and RF treatments of the niobium cavities, high power input couplers and HOM dampers and for the liquid-helium tests of the cryo-modules, and NSRRC for the electronic/diagnostic system, final assembly and system integration, high power horizontal test, and reliable test. This work reports the results obtained during the production of these three SRF modules at KEK and NSRRC.
|
|
|
TUP051 |
Horizontal High Pressure Water Rinsing for Performance Recovery |
527 |
|
- Y. Morita, K. Akai, T. Furuya, A. Kabe, S. Mitsunobu, M. Nishiwaki
KEK, Ibaraki, Japan
|
|
|
Eight superconducting accelerating cavities were operated for more than ten years at the KEKB machine. Those cavities are also used at SuperKEKB. During the KEKB operation, Q values of some cavities were degraded. Cause of the degradation was contamination by air dusts at a repair of vacuum seals or a gasket replacement of input couplers. So far, those degradations are acceptable for the SuperKEKB operation, however, further degradation will make the operation unstable and, in the worst case, make it impossible. High pressure rinsing (HPR) is an effective method to clean the cavity surface. In order to apply HPR, however, the cavity has to be disassembled from a cryomodule. The disassembly takes time and costs. Furthermore, re-sealed vacuum flanges bring the risk of vacuum leakage again. Therefore we have developed a horizontal HPR. This method applies a high pressure water jet that is inserted horizontally into the cavity in the cryomodule. The wasted water is extracted with an aspirator. This method does not require the disassembly. We applied the horizontal HPR to our degraded cavity. Its RF performance has been successfully recovered.
|
|
|
THP061 |
Developments of HOM Dampers for SuperKEKB Superconducting Cavity |
1058 |
|
- M. Nishiwaki, K. Akai, T. Furuya, A. Kabe, S. Mitsunobu, Y. Morita
KEK, Ibaraki, Japan
|
|
|
Eight superconducting accelerating cavities were stably operated under a high beam current and a large beam induced HOM power in KEKB electron ring. The HOM power of 16 kW at the beam current of 1.4A was absorbed in two ferrite dampers attached to each cavity. In SuperKEKB, that is the upgrade machine of KEKB, the design beam current is 2.60 A. The HOM power of higher than 40 kW is expected to be induced. To cope with the large HOM power, precise evaluations of HOM power loads including HOM dampers were carried out. Then, new ferrite dampers with reinforced water cooling were developed and high-power tested. On the other hand, the evaluation indicated that an additional HOM damper can absorb significant amount of HOM power. Additional damper is effective to reduce each ferrite damper load. In this report, we will describe the results of high power tests of the new ferrite dampers, studies for additional dampers, and an installation plan for SuperKEKB.
|
|
|