Paper | Title | Page |
---|---|---|
MOP078 | Horizontal Testing of a Dressed Deflecting Mode Cavity for the APS Upgrade Short Pulse X-Ray Project | 321 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CHI1357. The short pulse x-ray (SPX) part of the Advanced Photon Source (APS) Upgrade is an effort to enhance time-resolved experiments on a few-ps-scale at the APS. The goal of SPX is the generation of short pulses of x-rays for pump-probe time-resolved capability using superconducting rf (SRF) deflecting cavities*. These cavities will create a correlation between longitudinal position in the electron bunch and vertical momentum**. The light produced by this bunch can be passed through a slit to produce a pulse of light much shorter (1-2 ps instead of 100 ps) than the bunch length at reduced flux. An SPX cavity has been tested with a helium vessel and tuner. In addition to studying rf performance with more realistic cooling, this test allowed integration and operation of many systems designed for SPX cryomodule in-ring operation. These systems included an APS-constructed 5 kW, 2.815 GHz amplifier, a digital low-level rf controller system designed and fabricated in collaboration with LBNL, a cavity tuner, and instrumentation systems designed for the existing APS infrastructure. Cavity performance and subsystem performance will be reported and discussed in this paper. * A. Zholents et al., NIM A 425, 385 (1999). ** A. Nassiri et al., “Status of the Short-Pulse X-Ray Project at the Advanced Photon Source,” IPAC 2012, New Orleans, LA, May 2012. |
||
THP012 | Rebuild of Capture Cavity 1 at Fermilab | 917 |
|
||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. The front end of the proposed Advanced Superconducting Test Accelerator at Fermilab employs two single cavity cryomodules, known as ‘Capture Cavity 1’ and ‘Capture Cavity 2’, for the first stage of acceleration. Capture Cavity 1 was previously used as the accelerating structure for the A0 Photoinjector to a peak energy of ~14 Mev. In its new location a gradient of ~25 MV/m is required. This has necessitated a major rebuild of the cryomodule including replacement of the cavity with a higher gradient one. Retrofitting the cavity and making upgrades to the module required significant re-design. The design choices and their rationale, summary of the rebuild, and early test results are presented. |
||