Author: Gonnella, D.
Paper Title Page
MOP071 Record Quality Factor Performance of the Prototype Cornell ERL Main Linac Cavity in the Horizontal Test Cryomodule 300
 
  • N.R.A. Valles, R.G. Eichhorn, F. Furuta, G.M. Ge, D. Gonnella, D.L. Hall, Y. He, K.M.V. Ho, G.H. Hoffstaetter, M. Liepe, T.I. O'Connel, S. Posen, P. Quigley, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Supported by NSF grant DMR-0807731
Future SRF linac driven accelerators operated in CW mode will require very efficient SRF cavities with high intrinsic quality factors Q at medium accelerating fields. Cornell has recently finished testing the fully equipped 1.3 GHz, 7-cell main linac cavity for the Cornell Energy Recovery Linac in a horizontal test cryomodule (HTC). Measurements characterizing the fundamental mode’s quality factor have been completed, showing record Q performance. In this paper, we present detailed quality factor vs gradient results for three HTC assembly stages. We show that the performance of an SRF cavity can be maintained when installed into a cryomodule, and that thermal cycling reduces residual surface resistance. We present world record results for a fully equipped multicell cavity in a cryomodule, reaching intrinsic quality factors at operating accelerating field of Q(E =16.2 MV/m, 1.8K) > 6·1010 and Q(E =16.2 MV/m, 1.6K) > 1.0·1011, corresponding to a very low residual surface resistance of 1.1 nOhm.
 
 
TUP026 Performance of a FNAL Nitrogen Treated Superconducting Niobium Cavity at Cornell 475
 
  • D. Gonnella, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • A. Grassellino
    Fermilab, Batavia, USA
 
  Funding: NSF
In many tests of superconducting cavities, the performance of the cavity in the medium field region will be limited by medium field Q slope. For projects such as the proposed Cornell Energy Recovery Linac, high Q operation at medium fields is necessary to meet specifications for efficient CW cavity operation. A single cell cavity was prepared by Fermilab by electropolishing it and baking it at 1000°C with 1x10-2 Torr of Nitrogen, and subsequently tested at Cornell. The cavity displayed an increase in Q at medium fields between 5 and 20 MV/m at 2.0 K, opposite of the usual medium field Q slope. The material properties of this cavity were studied and correlated with performance. This analysis helps to better understand how to overcome medium field Q slope and improve cavity performance in future CW SRF machines such as the Cornell ERL.
 
 
TUP027 High Q0 Studies at Cornell 478
 
  • D. Gonnella, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF
The construction and preparation of superconducting RF cavities with very high quality factors is very advantageous for future particle accelerators operating in CW mode. Until recently, the highest quality factors measured in SRF cavities were on the order of 1011. A Cornell ERL single-center-cell cavity was prepared with BCP and a five day heat treatment at 1000°C. Following this treatment, the cavity was tested and achieved a record high intrinsic quality factor of 2.9·1011 at 1.4 K, corresponding to a very small residual resistance of (0.35±0.10) nOhm. This cavity was then given a series of BCP’s of 5, 75, and 200 μm and retested. Material properties were extracted from the data hinting at a very low mean free path of the niobium. In this paper we discuss the unusual material properties of the surface layer of the cavity and their implication for the RF performance of the cavity.
 
 
TUP028 Investigation of Spatial Variation of the Surface Resistance of a Superconducting RF Cavity 483
 
  • D. Gonnella, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • R.E. French
    Corning Community College, Corning, USA
 
  Funding: NSF
Cornell has recently completed a single cell temperature mapping system with a resolution of a few tenths of a millikelvin, corresponding to a surface resistance resolution of 1 nOhm. A superconducting RF cavity was tested using temperature mapping and the surface resistance was extracted from the temperature mapping data as function of position on the cavity surface. The surface resistance was profiled across the surface of the cavity between 5 and 35 MV/m and at different temperatures between 1.6 and 2.1 K. From BCS fitting of the local surface resistance, the spatial variation and the field dependence of the mean free path, energy gap, and residual resistance was found. These studies give interesting new insight into the degree of variation of the properties of the superconductor over the surface of the cavity.
 
 
TUP029 Heat Treatment of SRF Cavities in a Low-Pressure Atmosphere 487
 
  • D. Gonnella, F. Furuta, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF
Recent results from FNAL on baking superconducting RF cavities at high temperatures in a low-pressure atmosphere of a few mTorr indicate that such treatments can increase the medium field quality factor. In this paper we report on studies from Cornell, giving new insight into the mechanism behind this effect.
 
 
TUP072 Quality Factor Measurements of the Ultramet 3 GHz Cavity Constructed Using Chemical Vapour Deposition 607
 
  • D.L. Hall, D. Gonnella, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.M. Arrieta, S.R. McNeal
    Ultramet, California, USA
 
  Funding: US Department of Energy Phase 1 Small Business Innovation Research award to Ultramet
A seamless 3 GHz bulk niobium cavity constructed by Ultramet using rapid chemical vapor deposition (CVD) techniques has been tested on the vertical SRF test stand at Cornell. The cavity received a 25 um buffered chemical polish (BCP) and 700 C heat treatment for 4 days. First test results gave an intrinsic quality factor of Q0 = (1.55 ± 0.12) x 107 and (2.00 ± 0.15) x 107 at 4.2 K and 1.5 K, respectively. A second BCP removed 100 um of material, after which test results improved to Q0 = (7.59 ± 1.52) x 107 and (4.16 ± 0.31) x 108 at 4.2 K and 1.5 K. During the first test poor coupling to the input amplifier impeded tests at accelerating fields >0.2 MV/m, while during the second test the cavity quenched at 1.3 MV/m when operating at 1.5 K. An optical inspection of the cavity after the second test revealed the presence of at least 4 pits on the upper hemisphere suggesting an area of higher than average surface resistance that may have contributed to the low field quench via thermal runaway. The potential of CVD as a construction method for SRF cavities is discussed.
 
 
TUP105 Investigation of the Surface Resistivity of SRF Cavities via the Heat and Srimp Program as Well as the Multi-Cell T-Map System 724
 
  • G.M. Ge, D. Gonnella, G.H. Hoffstaetter, M. Liepe, H. Padamsee
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F. Furuta
    Cornell University, Ithaca, New York, USA
 
  A high-sensitive temperature mapping system for multi-cell SRF cavities has been constructed at Cornell University. The resolution of the system is 1mK. Hence it’s able to detect small temperature increases when cavities reach at low accelerating gradients e.g. 3MV/m. The surface resistivity of superconductor under radio-frequency electromagnetic field can be calculated from the temperature increases. In this contribution, the surface resistance map of multi-cell SRF cavities is shown. The temperature mapping result is possible to establish a relationship between the surface resistivity and the magnetic field as well. Unlike the RF method which is average value of the surface resistance, the T-map results give local surface resistivity versus magnetic field. BCS theory assumes the surface resistivity is independent to the magnetic field. The T-map results, however, suggest that the surface resistance at high-loss region is field dependent and caused Q-slope.  
 
THIOB02 High Q Cavities for the Cornell ERL Main Linac 844
 
  • R.G. Eichhorn, B. Bullock, B. Clasby, B. Elmore, F. Furuta, A. Ganshin, G.M. Ge, D. Gonnella, D.L. Hall, Y. He, K.M.V. Ho, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, T.I. O'Connel, S. Posen, P. Quigley, J. Sears, V.D. Shemelin, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  While SRF research for linear colliders was focused on achieving high gradients, Cornell’s proposal for an energy recovery linac (ERL) demanded for low cw losses. Starting several years ago, a high-Q R&D phase was launched that led to remarkable results recently: A fully dressed cavity (7 cells, 1.3 GHz) with side-mounted input coupler and beamline HOM absorbers achieved a Q of 3.5·1010 ((16 MV/m, 1.8 K). This talk will review the staged approach we have chosen in testing a single cavity in a horizontal short cryomodule (HTC), report results on each step and conclude on our findings about preserving high Q from vertical testing. We also discuss the production of six additional cavities as we progress toward constructing a full 6-cavity cryomodule as a prototype for Cornell’s main linac module  
slides icon Slides THIOB02 [8.378 MB]