Author: Ferreira, L.M.A.
Paper Title Page
TUP047 Niobium Cavity Electropolishing Modelling and Optimisation 518
 
  • L.M.A. Ferreira, S. Calatroni, S. Forel
    CERN, Geneva, Switzerland
  • J.A. Shirra
    Loughborough University, Leicestershre, United Kingdom
 
  It’s widely accepted that electropolishing is the most suitable surface finishing process to achieve high performance bulk Nb accelerating cavities. At CERN, as part of the R&D studies for the 704 MHz high-beta SPL cavities, a new vertical electropolishing facility has been assembled and a study is on-going for the modelling of electropolishing on cavities with COMSOL software. In a first phase, the electrochemical parameters were taken into account for a fixed process temperature and flow rate, and are presented in this poster as well as the results obtained on a real SPL single cell cavity. The procedure to acquire the data used as input for the simulation is presented. The modelling procedure adopted to optimise the cathode geometry, aimed at a uniform current density distribution in the cavity cell for the minimum working potential and total current is explained. Some preliminary results on fluid dynamics and Joule effect are also briefly described.  
 
TUP073 Niobium Coatings for the HIE-ISOLDE QWR Superconducting Accelerating Cavities 611
 
  • N.M. Jecklin, S. Calatroni, L.M.A. Ferreira, I. Mondino, A. Sublet, M. Therasse, W. Venturini Delsolaro
    CERN, Geneva, Switzerland
  • B. Delaup
    EPFL, Lausanne, Switzerland
 
  The HIE-ISOLDE project is the upgrade of the existing ISOLDE facility at CERN, which is dedicated to the production of a large variety of radioactive ion beams for nuclear physics experiments. A new linac made of 20 β=10.3% and 12 β=6.3% QWR superconducting accelerating cavities at 101 MHz will be built, and in a first phase two cryomodules of 5 high-beta cavities each are scheduled to accelerate first beams in 2015. The cavities are made of a copper substrate, with a sputter-coated superconductive niobium layer, operated at 4.5 K with an accelerating field of 6 MV/m at 10W RF losses (Q0=4.5e8) In this paper we will discuss the baseline surface treatment and coating procedure which allows obtaining the required performance, as well as the steps undertaken in order to prepare series production of the required number of cavities guaranteeing their quality and functionality.