Paper |
Title |
Page |
TUP047 |
Niobium Cavity Electropolishing Modelling and Optimisation |
518 |
|
- L.M.A. Ferreira, S. Calatroni, S. Forel
CERN, Geneva, Switzerland
- J.A. Shirra
Loughborough University, Leicestershre, United Kingdom
|
|
|
It’s widely accepted that electropolishing is the most suitable surface finishing process to achieve high performance bulk Nb accelerating cavities. At CERN, as part of the R&D studies for the 704 MHz high-beta SPL cavities, a new vertical electropolishing facility has been assembled and a study is on-going for the modelling of electropolishing on cavities with COMSOL software. In a first phase, the electrochemical parameters were taken into account for a fixed process temperature and flow rate, and are presented in this poster as well as the results obtained on a real SPL single cell cavity. The procedure to acquire the data used as input for the simulation is presented. The modelling procedure adopted to optimise the cathode geometry, aimed at a uniform current density distribution in the cavity cell for the minimum working potential and total current is explained. Some preliminary results on fluid dynamics and Joule effect are also briefly described.
|
|
|
TUP073 |
Niobium Coatings for the HIE-ISOLDE QWR Superconducting Accelerating Cavities |
611 |
|
- N.M. Jecklin, S. Calatroni, L.M.A. Ferreira, I. Mondino, A. Sublet, M. Therasse, W. Venturini Delsolaro
CERN, Geneva, Switzerland
- B. Delaup
EPFL, Lausanne, Switzerland
|
|
|
The HIE-ISOLDE project is the upgrade of the existing ISOLDE facility at CERN, which is dedicated to the production of a large variety of radioactive ion beams for nuclear physics experiments. A new linac made of 20 β=10.3% and 12 β=6.3% QWR superconducting accelerating cavities at 101 MHz will be built, and in a first phase two cryomodules of 5 high-beta cavities each are scheduled to accelerate first beams in 2015. The cavities are made of a copper substrate, with a sputter-coated superconductive niobium layer, operated at 4.5 K with an accelerating field of 6 MV/m at 10W RF losses (Q0=4.5e8) In this paper we will discuss the baseline surface treatment and coating procedure which allows obtaining the required performance, as well as the steps undertaken in order to prepare series production of the required number of cavities guaranteeing their quality and functionality.
|
|
|