Paper | Title | Page |
---|---|---|
MOP009 | A Summary of the Advanced Photon Source (APS) Short Pulse X-ray (SPX) R&D Accomplishments | 92 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06H11357. The Advanced Photon Source Upgrade Project (APS-U) at Argonne will include generation of short-pulse x-rays based on Zholents’ [1] deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. Since early 2012, in collaboration with Jefferson National Laboratory, we have made significant progress prototyping and testing a number of single-cell deflecting cavities. We have designed, prototyped, and tested silicon carbide as damping material for higher-order-mode (HOM) dampers, which are broadband to handle the HOM power across the frequency spectrum produced by the APS beam. In collaboration with Lawrence Berkeley National Laboratory, we have developing a state-of-the-art timing and synchronization system for distributing stable rf signals over optical fiber capable of achieving tens of femtoseconds phase drift and jitter. Collaboration with the Advanced Computations Department at Stanford Linear Accelerator Center is looking into simulations of complex, multi- cavity geometries. This contribution provides a progress report on the current R&D status of the SPX project. [1] A. Zholents et al., NIM A 425, 385 (1999). |
||
THP073 | HOM Dampers and Waveguide for the Short Pulse X-Ray (SPX) Project | 1098 |
|
||
Funding: Work supported by U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. The production of HOM dampers for the superconducting SPX cavities has been undertaken at the Advanced Photon Source. The dampers are vacuum compatible loads that utilize a four wedge design in WR284 rectangular waveguide. The rf lossy material consists of hexoloy silicon carbide (SiC) due to its suitable mechanical and electrical material properties. Issues regarding manufacturing consist of initial SiC material failure due to fabrication stresses as well as substandard soldering bonds of the SiC to the copper damper bodies. In addition, integration into the cryomodule consists of rf, thermal, and mechanical design considerations of the dampers and the waveguide transmission lines. An analysis of the manufacturing and integration issues and remedies are discussed further in this paper. |
||