A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Satogata, T.

Paper Title Page
MO4RAC04 First Polarized Proton Collisions at a Beam Energy of 250 GeV in RHIC 91
 
  • M. Bai, L. A. Ahrens, J.G. Alessi, G. Atonian, A. Bazilevsky, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, G. Ganetis, C.J. Gardner, R.L. Gill, J.W. Glenn, Y. Hao, T. Hayes, H. Huang, R.L. Hulsart, A. Kayran, J.S. Laster, R.C. Lee, A.U. Luccio, Y. Luo, W.W. MacKay, Y. Makdisi, G.J. Marr, A. Marusic, G.T. McIntyre, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, B. Morozov, J. Morris, P. Oddo, B. Oerter, F.C. Pilat, V. Ptitsyn, D. Raparia, G. Robert-Demolaize, T. Roser, T. Russo, T. Satogata, V. Schoefer, K. Smith, D. Svirida, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


After having provided collisions of polarized protons at a beam energy of 100 GeV since 2001, the Relativistic Heavy Ion Collider~(RHIC) at BNL reached its design energy of polarized proton collision at 250 GeV. With the help of the two full Siberian snakes in each ring as well as careful orbit correction and working point control, polarization was preserved during acceleration from injection to 250~GeV. During the course of the Physics data taking, the spin rotators on either side of the experiments of STAR and PHENIX were set up to provide collisions with longitudinal polarization at both experiments. Various techniques to increase luminosity like further beta star squeeze and RF system upgrades as well as gymnastics to shorten the bunch length at store were also explored during the run. This paper reports the performance of the run as well as the plan for future performance improvement in RHIC.

 

slides icon

Slides

 
WE6PFP007 Dynamic Aperture Evaluation for the RHIC 2009 Polarized Proton Runs 2492
 
  • Y. Luo, M. Bai, J. Beebe-Wang, W. Fischer, C. Montag, G. Robert-Demolaize, T. Satogata, S. Tepikian, D. Trbojevic
    BNL, Upton, Long Island, New York
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


In preparation for the RHIC polarized proton run 2009, simulations were carried out to evaluate the million turn dynamic apertures for different beta*s at the proposed beam energies of 100 GeV and 250 GeV. One goal of this study is to find out the best beta* for this run. We also evaluated the effects of the second order chromaticity correction. The second order chromaticties can be corrected with the MAD8 Harmon module or by correcting the horizontal and vertical half-integer resonance driving terms.

 
WE6PFP009 RHIC Low Energy Tests and Initial Operations 2498
 
  • T. Satogata, L. A. Ahrens, M. Bai, J.M. Brennan, D. Bruno, J.J. Butler, K.A. Drees, A.V. Fedotov, W. Fischer, M. Harvey, T. Hayes, W. Jappe, R.C. Lee, W.W. MacKay, N. Malitsky, G.J. Marr, R.J. Michnoff, B. Oerter, E. Pozdeyev, T. Roser, F. Severino, K. Smith, S. Tepikian, N. Tsoupas
    BNL, Upton, Long Island, New York
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


There is significant interest in RHIC heavy ion collisions at center of mass energies of 5-50 GeV/u, motivated by a search for the QCD phase transition critical point. The low end of this energy range is nearly a factor of four below the nominal RHIC injection center of mass energy of 19.6 GeV/u. There are several operational challenges in the low-energy regime, including harmonic number changes, longitudinal acceptance, magnet field quality, lattice control, and luminosity monitoring. We report on the results of beam tests with protons and gold in 2007–9, including first RHIC operations at {(sNN)=9.2} GeV and low-energy nonlinear field corrections at {(sNN)=5} GeV.

 
WE6PFP061 Beta* and Beta-Waist Measurement and Control at RHIC 2640
 
  • V. Ptitsyn, A.J. Della Penna, V. Litvinenko, N. Malitsky, T. Satogata
    BNL, Upton, Long Island, New York
 
 

Funding: Work performed under US DOE contract DE-AC02-98CH1-886


During the course of last RHIC runs the beta-functions at the collision points (beta*) have been reduced gradually to 0.7m. In order to maximize the collision luminosity and ensure the agreement of the actual machine optics with the design one, more precise measurements and control of beta* value and beta* waist location became necessary. The paper presents the results of the implementation of the technique applied in last two RHIC runs. The technique is based on well-known relation between the tune shift and the beta function and involves precise betatron tune measurements using BBQ system as well as specially developed knobs for beta* and beta* waist location control.

 
WE6PFP006 Overview of Magnetic Nonlinear Beam Dynamics in RHIC 2489
 
  • Y. Luo, M. Bai, J. Beebe-Wang, J. Bengtsson, R. Calaga, W. Fischer, A.K. Jain, N. Malitsky, S. Peggs, F.C. Pilat, V. Ptitsyn, G. Robert-Demolaize, T. Satogata, S. Tepikian, D. Trbojevic
    BNL, Upton, Long Island, New York
  • R. Tomás
    CERN, Geneva
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


In the article we review the nonlinear beam dynamics from nonlinear magnetic fields in the Relativistic Heavy Ion Collider. The nonlinear magnetic fields include the magnetic field errors in the interaction regions, chromatic sextupoles, and sextupole component from arc dipoles. Their effects on the beam dynamics and long-term dynamic apertures are evaluated. The online measurement and correction methods for the IR nonlinear errors, nonlinear chromaticity, and horizontal third order resonance are reviewed. The overall strategy for the nonlinear effect correction in the RHIC is discussed.

 
WE6PFP008 Reduction of Beta* and Increase of Luminosity at RHIC 2495
 
  • F.C. Pilat, M. Bai, D. Bruno, P. Cameron, K.A. Drees, V. Litvinenko, Y. Luo, N. Malitsky, G.J. Marr, A. Marusic, V. Ptitsyn, T. Satogata, S. Tepikian, D. Trbojevic
    BNL, Upton, Long Island, New York
 
 

The reduction of beta* beyond the 1m design value at RHIC has been consistently achieved over the last 6 years of RHIC operations, resulting in an increase of luminosity for different running modes and species. During the recent 2007-08 deuteron-gold run the reduction to 0.70 from the design 1 m achieved a 30% increase in delivered luminosity. The key ingredients in allowing the reduction have been the capability of efficiently developing ramps with tune and coupling feedback, orbit corrections on the ramp, and collimation at injection and on the ramp, to minimize beam losses in the final focus triplets, the main aperture limitation for the collision optics. We will describe the operational strategy used to reduce the b*, at first squeezing the beam at store, to test feasibility, followed by the operationally preferred option of squeezing the beam during acceleration, and the resulting luminosity increase obtained in the Cu-Cu run in 2005, Au-Au in 2007 and the deuteron-Au run in 2007-08. We will also include beta squeeze plans and results for the upcoming 2009 run with polarized protons at 250 GeV.

 
TH5RFP013 RHIC BPM System Average Orbit Calculations 3468
 
  • R.J. Michnoff, P. Cerniglia, C. Degen, R.L. Hulsart, M.G. Minty, R.H. Olsen, T. Roser, T. Satogata
    BNL, Upton, Long Island, New York
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


RHIC BPM system average orbit was originally calculated by averaging positions of 10000 consecutive turns for a single selected bunch. Known perturbations in RHIC particle trajectories, with multiple frequencies around 10 Hz, contribute to observed average orbit fluctuations. In 2006, the number of turns for average orbit calculations was made programmable; this was used to explore averaging over single periods near 10 Hz. Although this has provided an average orbit signal quality improvement, an average over many periods would further improve the accuracy of the measured closed orbit. A new continuous average orbit calculation is currently under development and planned for use in the 2009 RHIC run. This paper will discuss the algorithm, performance with a simulated beam signal, and beam measurements.

 
TH6PFP066 The Correction of Linear Lattice Gradient Errors Using an AC Dipole 3859
 
  • G. Wang, M. Bai, V. Litvinenko, T. Satogata
    BNL, Upton, Long Island, New York
 
 

Funding: Department of Energy


Precise measurements of optics from coherent betatron oscillations driven by ac dipoles have been demonstrated at RHIC and the Tevatron. For RHIC, the observed rms beta-beat is about 10%. Reduction of beta-beating is an essential component of performance optimization at high energy colliders. A scheme of optics correction was developed and tested in the RHIC 2008 run, using ac dipole optics for measurement and a few adjustable trim quadrupoles for correction. In this scheme, we first calculate the phase response matrix from the measured phase advance, and then apply a singular value decomposition (SVD) algorithm to the phase response matrix to find correction quadrupole strengths. We present both simulation and some preliminary experimental results of this correction.