A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Litvinenko, V.

Paper Title Page
MO6PFP004 Small Gap Magnets and Vacuum Chambers for eRHIC 133
 
  • W. Meng, Y. Hao, A.K. Jain, V. Litvinenko, G.J. Mahler, J.E. Tuozzolo
    BNL, Upton, Long Island, New York
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


eRHIC, a future high luminosity electron-ion collider at BNL, will add polarized electrons to the list of colliding species in RHIC. A 10-to-30 GeV electron energy recovery linac will require up to six passes around the RHIC 3.8 km circumference. We are developing and testing small (3-to-5 mm gap) dipole and quadrupole magnets and vacuum chambers for cost-effective eRHIC passes. We are also studying the sensitivity of eRHIC pass optics to magnet and alignment errors in such a small-magnet structure. We present the magnetic and mechanical designs of the small gap eRHIC components and prototyping test results.

 
MO6RFP050 Ion Bombardment in RF Photoguns 473
 
  • E. Pozdeyev, A. Kayran, V. Litvinenko
    BNL, Upton, Long Island, New York
 
 

A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the RF field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment.

 
TU6PFP074 Analytical Studies of Coherent Electron Cooling 1460
 
  • G. Wang, M. Blaskiewicz, V. Litvinenko
    BNL, Upton, Long Island, New York
 
 

Funding: Department Of Energy


Under certain assumptions and simplifications, we studied a few physics processes of Coherent Electron Cooling using analytical approach. In the modulation process, the effect due to merging the ion beam with the electron beam is studied under single kick approximation. In the FEL amplifier, we studied the amplification of the electron density modulation using 1D analytical approach. Both the electron charge density and the phase space density are derived in the frequency domain. The solutions are then transformed into the space domain through Fast Fourier Transformation (FFT).

 
WE6PFP008 Reduction of Beta* and Increase of Luminosity at RHIC 2495
 
  • F.C. Pilat, M. Bai, D. Bruno, P. Cameron, K.A. Drees, V. Litvinenko, Y. Luo, N. Malitsky, G.J. Marr, A. Marusic, V. Ptitsyn, T. Satogata, S. Tepikian, D. Trbojevic
    BNL, Upton, Long Island, New York
 
 

The reduction of beta* beyond the 1m design value at RHIC has been consistently achieved over the last 6 years of RHIC operations, resulting in an increase of luminosity for different running modes and species. During the recent 2007-08 deuteron-gold run the reduction to 0.70 from the design 1 m achieved a 30% increase in delivered luminosity. The key ingredients in allowing the reduction have been the capability of efficiently developing ramps with tune and coupling feedback, orbit corrections on the ramp, and collimation at injection and on the ramp, to minimize beam losses in the final focus triplets, the main aperture limitation for the collision optics. We will describe the operational strategy used to reduce the b*, at first squeezing the beam at store, to test feasibility, followed by the operationally preferred option of squeezing the beam during acceleration, and the resulting luminosity increase obtained in the Cu-Cu run in 2005, Au-Au in 2007 and the deuteron-Au run in 2007-08. We will also include beta squeeze plans and results for the upcoming 2009 run with polarized protons at 250 GeV.

 
WE6PFP057 Beam-Beam Interaction Study of Medium Energy eRHIC 2628
 
  • Y. Hao, V. Litvinenko, V. Ptitsyn
    BNL, Upton, Long Island, New York
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


Medium Energy eRHIC (MeRHIC), the first stage design of eRHIC, includes a multi-pass ERL that provides 4GeV high quality electron beam to collide with the ion beam of RHIC. It delivers a minimum luminosity of 1032 cm-2s-1. Beam-beam effects present one of major factors limiting the luminosity of colliders. In this paper, both beam-beam effects on the electron beam and the proton beam in MeRHIC are investigated. The beam-beam interaction can induce a head-tail type instability of the proton beam referred to as the kink instability. Thus, beam stability conditions should be established to avoid proton beam loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure that the beam quality is good enough for the energy recovery pass. The relation of proton beam stability, electron disruption and consequential luminosity are carried out after thorough discussion.

 
WE6PFP058 Electron Pinch Effect in Beam-Beam Interaction of ERL Based eRHIC 2631
 
  • Y. Hao, V. Litvinenko, V. Ptitsyn
    BNL, Upton, Long Island, New York
 
 

Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.


Beam-beam effects present one of major factors limiting the luminosity of colliders. In the linac-ring option of the eRHIC design, an electron beam accelerated in a superconducting energy recovery linac collides with a proton beam circulating in the RHIC ring. Some specific features of beam-beam interactions should be carefully evaluated for the linac-ring configuration. One of the most important effects on ion beam stability originates from a strongly focused electron beam because of the beam-beam force. This electron pinch effect makes the beam-beam parameter of the ion beam several times larger than the design value, and leads to the fast emittance growth of the ion beam. The electron pinch effect can be controlled by adjustments of electron lattice and the incident emittance. We present results of simulations optimizing ion beam quality in the presence of this pinch effect.

 
WE6PFP061 Beta* and Beta-Waist Measurement and Control at RHIC 2640
 
  • V. Ptitsyn, A.J. Della Penna, V. Litvinenko, N. Malitsky, T. Satogata
    BNL, Upton, Long Island, New York
 
 

Funding: Work performed under US DOE contract DE-AC02-98CH1-886


During the course of last RHIC runs the beta-functions at the collision points (beta*) have been reduced gradually to 0.7m. In order to maximize the collision luminosity and ensure the agreement of the actual machine optics with the design one, more precise measurements and control of beta* value and beta* waist location became necessary. The paper presents the results of the implementation of the technique applied in last two RHIC runs. The technique is based on well-known relation between the tune shift and the beta function and involves precise betatron tune measurements using BBQ system as well as specially developed knobs for beta* and beta* waist location control.

 
TU5PFP033 BNL 703 MHz SRF Cryomodule Demonstration 891
 
  • A. Burrill, I. Ben-Zvi, R. Calaga, T. D'Ottavio, L.R. Dalesio, D.M. Gassner, H. Hahn, L.T. Hoff, A. Kayran, J. Kewisch, R.F. Lambiase, D.L. Lederle, V. Litvinenko, G.J. Mahler, G.T. McIntyre, B. Oerter, C. Pai, D. Pate, D. Phillips, E. Pozdeyev, C. Schultheiss, L. Smart, K. Smith, T.N. Tallerico, J.E. Tuozzolo, D. Weiss, A. Zaltsman
    BNL, Upton, Long Island, New York
 
 

This paper will present the preliminary results of the testing of the 703 MHz SRF cryomodule designed for use in the ampere class ERL under construction at Brookhaven National Laboratory. The preliminary VTA cavity testing, carried out at Jefferson Laboratory, demonstrated cavity performance of 20 MV/m with a Qo of 1x1010, results we expect to reproduce in the horizontal configuration. This test of the entire string assembly will allow us to evaluate all of the additional cryomodule components not previously tested in the VTA and will prepare us for our next milestone test which will be delivery of electrons from our injector through the cryomodule to the beam dump. This will also be the first demonstration of an accelerating cavity designed for use in an ampere class ERL, a key development which holds great promise for future machines.

 
WE6PFP062 MeRHIC – Staging Approach to eRHIC 2643
 
  • V. Ptitsyn, J. Beebe-Wang, I. Ben-Zvi, A. Burrill, R. Calaga, X. Chang, A.V. Fedotov, H. Hahn, L.R. Hammons, Y. Hao, A. Kayran, V. Litvinenko, G.J. Mahler, C. Montag, B. Parker, A. Pendzick, S.R. Plate, E. Pozdeyev, T. Roser, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang
    BNL, Upton, Long Island, New York
  • E. Tsentalovich
    MIT, Middleton, Massachusetts
 
 

Funding: Work performed under US DOE contract DE-AC02-98CH1-886


Design of a medium energy electron-ion collider (MEeIC) is under development at Collider-Accelerator Department, BNL. The design envisions a construction of 4 GeV electron accelerator in a local area inside the RHIC tunnel. The electrons will be produced by a polarized electron source and accelerated in the energy recovery linac. Collisions of the electron beam with 100 GeV/u heavy ions or with 250 GeV polarized protons will be arranged in the existing IP2 interaction region of RHIC. The luminosity of electron-proton collisions at 1032 cm-2 s-1 level will be achieved with 40 mA CW electron current with presently available parameters of the proton beam. Efficient cooling of proton beam at the collision energy may bring the luminosity to 1033 cm-2 s-1 level. The important feature of the MEeIC is that it would serve as first stage of eRHIC, a future electron-ion collider at BNL with both higher luminosity and energy reach. The majority of the MEeIC accelerator components will be used for eRHIC.

 
TH6PFP066 The Correction of Linear Lattice Gradient Errors Using an AC Dipole 3859
 
  • G. Wang, M. Bai, V. Litvinenko, T. Satogata
    BNL, Upton, Long Island, New York
 
 

Funding: Department of Energy


Precise measurements of optics from coherent betatron oscillations driven by ac dipoles have been demonstrated at RHIC and the Tevatron. For RHIC, the observed rms beta-beat is about 10%. Reduction of beta-beating is an essential component of performance optimization at high energy colliders. A scheme of optics correction was developed and tested in the RHIC 2008 run, using ac dipole optics for measurement and a few adjustable trim quadrupoles for correction. In this scheme, we first calculate the phase response matrix from the measured phase advance, and then apply a singular value decomposition (SVD) algorithm to the phase response matrix to find correction quadrupole strengths. We present both simulation and some preliminary experimental results of this correction.

 
FR1GRI01 Coherent Electron Cooling 4236
 
  • V. Litvinenko
    BNL, Upton, Long Island, New York
 
 

Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

 

slides icon

Slides

 
FR5PFP080 Reduction of the Friction Force in Electron Cooling Systems due to Magnetic Field Errors 4496
 
  • A.V. Sobol, G.I. Bell, D.L. Bruhwiler
    Tech-X, Boulder, Colorado
  • A.V. Fedotov, V. Litvinenko
    BNL, Upton, Long Island, New York
 
 

Funding: Supported by the US DOE Office of Nuclear Physics under grants DE-FC02-07ER41499 and DE-FG02-04ER84094; used NERSC resources under grant DE-AC02-05CH11231.


Magnetic field errors can limit the dynamical friction force on co-propagating ions and, hence, increase the cooling time. We present theoretical and numerical results for reduction of the friction force due to bounded transverse magnetic field errors, as a function of wavelength. VORPAL * simulations using a binary collision algorithm ** show that small-wavelength field errors affect the friction logarithmically, via the Coulomb log, while long-wavelength errors reduce the friction by effectively increasing the transverse electron temperature. A complete understanding of finite-time effects and the role of small impact parameter collisions is required to correctly interpret the simulation results. We show that the distribution of electron-ion impact parameters is similar to a Pareto distribution, for which the central limit theorem does not apply. A new code has been developed to calculate the cumulative distribution function of electron-ion impact parameters and thus correctly estimate the expectation value and uncertainty of the friction force.


* C. Nieter and J. Cary, J. Comp. Phys. 196 (2004), p. 448.
** G. Bell et al., J. Comp. Phys. 227 (2008), p. 8714.