A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

photon

Paper Title Other Keywords Page
MO304 3.9 GHz Cavity Module for Linear Bunch Compression at FLASH cavity, HOM, electron, simulation 41
 
  • H.T. Edwards, E.R. Harms
    Fermilab, Batavia
  • C. Behrens
    DESY, Hamburg
 
 

FNAL has contributed to FLASH at DESY the third harmonic accelerating system, which will provide better beams for the FEL facility. The FNAL accelerating module has been qualified above specs and will be operational in FLASH in Spring.

 

slides icon

Slides

 
MOP005 LLNL's Precision Compton Scattering Light Source laser, electron, gun, scattering 58
 
  • F.V. Hartemann, F. Albert, S.G. Anderson, C.P.J. Barty, A.J. Bayramian, R.E. Bonnanno, T.S. Chu, R.R. Cross, C.A. Ebbers, D.J. Gibson, T.L. Houck, R.A. Marsh, D.P. McNabb, M. J. Messerly, R.D. Scarpetti, M. Shverdin, C. Siders, S.S.Q. Wu
    LLNL, Livermore, California
  • C. Adolphsen, A.E. Candel, E.N. Jongewaard, Z. Li, C. Limborg-Deprey, T.O. Raubenheimer, S.G. Tantawi, A.E. Vlieks, F. Wang, J.W. Wang, F. Zhou
    SLAC, Menlo Park, California
  • V.A. Semenov
    UCB, Berkeley, California
 
 

Continued progress in accelerator physics and laser technology have enabled the development of a new class of tunable x-ray and gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable, monochromatic (< 0.4% rms spectral width) source driven by a compact, high-gradient X-band linac designed in collaboration with SLAC is under construction at LLNL. High-brightness (250 pC, 3.5 ps, 0.4 mm.mrad), relativistic electron bunches will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable γ-rays in the 0.5-2.5 MeV photon energy range. This gamma-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Fields of endeavor include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status will be discussed, along with important applications, including nuclear resonance fluorescence and high precision medical imaging.

 
MOP034 Observation of Ozone Explosion of Liquid Nitrogen Induced by Irradiation with Electron Linear Accelerator electron, radiation, target, neutron 130
 
  • R. Taniguchi, N. Ito, T. Kojima, S. Okuda
    Osaka Prefecture University, Sakai
 
 

A pulsed electron radiography system has been developed, which consisted of an electron linear accelerator, a scintillation screen and a high sensitivity image sensor. The system was capable for high speed strobo-imaging by the use of the pulse feature of the electron beam with the pulse width about a few micro-second. On the other hand, the characteristics of electron images were different from X-ray images and neutron images. Absorption behavior of energetic electrons in materials is Bragg-like rather than exponential. Therefore, a high contrast transparent image was obtained by modulating of energy of the electron beam. By the use of this system and utilizing these features, we observed successfully an ozone explosion phenomenon of liquid nitrogen induced by electron irradiation, which has been considered to be a serious problem in material irradiation experiments.

 
TUP012 sFLASH - First Results of Direct Seeding at Flash electron, undulator, FEL, laser 419
 
  • J. Bödewadt, A. Azima, F. Curbis, H. Delsim-Hashemi, M. Drescher, E. Hass, U. Hipp, Th. Maltezopoulos, V. Miltchev, M. Mittenzwey, M. Rehders, J. Roßbach, J. Rönsch-Schulenburg, R. Tarkeshian, M. Wieland
    Uni HH, Hamburg
  • S. Bajt, S. Düsterer, K. Honkavaara, T. Laarmann, H. Schlarb
    DESY, Hamburg
  • R. Ischebeck
    PSI, Villigen
  • S. Khan
    DELTA, Dortmund
 
 

The free-electron laser facility FLASH at DESY (Hamburg) was upgraded during a five-month shutdown in winter 2009. Part of this upgrade was the installation of a direct seeding experiment in the XUV spectral range. Beside all components for transport and diagnostics of the photon beam in and out of the accelerator environment, a new 10 m long variable-gap undulator was installed upstream of the existing FLASH undulator system. The seed pulses are generated within a noble-gas jet by focusing 40 fs long Ti:Sa laser pulses into it resulting a comb of higher harmonics. In the first phase of the experiment the 21st harmonic of the 800 nm drive laser will be used to seed the FEL process. The commissioning of the experiment has started in April and the first results are expected after the FLASH commissioning period mid of summer 2010. The experimental setup and the commissioning procedures as well as first result will be presented.