A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Li, Z.

Paper Title Page
MOP025 ACE3P Computations of Wakefield Coupling in the CLIC Two-beam Accelerator 106
 
  • A.E. Candel, K. Ko, Z. Li, C.-K. Ng, V. Rawat, G.L. Schussman
    SLAC, Menlo Park, California
  • A. Grudiev, I. Syratchev, W. Wuensch
    CERN, Geneva
 
 

The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

 
MOP005 LLNL's Precision Compton Scattering Light Source 58
 
  • F.V. Hartemann, F. Albert, S.G. Anderson, C.P.J. Barty, A.J. Bayramian, R.E. Bonnanno, T.S. Chu, R.R. Cross, C.A. Ebbers, D.J. Gibson, T.L. Houck, R.A. Marsh, D.P. McNabb, M. J. Messerly, R.D. Scarpetti, M. Shverdin, C. Siders, S.S.Q. Wu
    LLNL, Livermore, California
  • C. Adolphsen, A.E. Candel, E.N. Jongewaard, Z. Li, C. Limborg-Deprey, T.O. Raubenheimer, S.G. Tantawi, A.E. Vlieks, F. Wang, J.W. Wang, F. Zhou
    SLAC, Menlo Park, California
  • V.A. Semenov
    UCB, Berkeley, California
 
 

Continued progress in accelerator physics and laser technology have enabled the development of a new class of tunable x-ray and gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable, monochromatic (< 0.4% rms spectral width) source driven by a compact, high-gradient X-band linac designed in collaboration with SLAC is under construction at LLNL. High-brightness (250 pC, 3.5 ps, 0.4 mm.mrad), relativistic electron bunches will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable γ-rays in the 0.5-2.5 MeV photon energy range. This gamma-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Fields of endeavor include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status will be discussed, along with important applications, including nuclear resonance fluorescence and high precision medical imaging.

 
TUP015 A Compact X-band Linac for an X-ray FEL 428
 
  • C.D. Nantista, C. Adolphsen, K.L.F. Bane, Z. Huang, Z. Li, F. Wang, F. Zhou
    SLAC, Menlo Park, California
 
 

With the growing demand for FEL light sources, cost issues are being revaluated. To make the machines more compact, higher-frequency room-temperature linacs are being considered, in particular, ones using C-band (5.7 GHz) rf technology where 40 MV/m gradients are possible. In this paper, we show that an X-band (11.4 GHz) linac using the technology developed for NLC/GLC can provide an even lower cost solution. In particular, stable operation is possible at gradients of 100 MV/m for single bunch operation, and 70 MV/m for multibunch operation. The concern of course is whether the stronger wakefields will lead to unacceptable emittance dilution. However, we show that the small emittances produced in a 250 MeV, low bunch charge, LCLS-like S-band injector and bunch compressor can be preserved in a multi-GeV X-band linac with reasonable alignment tolerances.

 
THP092 Multipacting Simulation and Analysis for the FRIB Superconducting Resonators Using Track3P 959
 
  • Z. Li, L. Ge, K. Ko
    SLAC, Menlo Park, California
  • W. Hartung, J.P. Holzbauer, J. Popielarski
    NSCL, East Lansing, Michigan
 
 

In the driver linac of the Facility for Rare Isotope Beams (FRIB), multipacting is an issue of concern for the superconducting resonators, which must accelerate the ion beams from 0.3 MeV per nucleon to 200 MeV per nucleon. While most of the multipacting bands can be conditioned and eliminated with RF, hard multipacting barriers may prevent the resonators from reaching the design voltage. Using the ACE3P code suite, multipacting bands can be computed and analysed with the Track3P module to identify potential problems in the resonator design. This paper will present simulation results for multipacting in half-wave and quarter-wave resonators for the FRIB driver linac and compare the simulations with RF measurements on the resonators.

 
TUP065 Concept Design of CW SC Proton Linac Based on Spoke Cavity for China ADS 1
 
  • Z. Li
    Southwest University of Science and Technology, Mianyang, Sichuan
 
 

A system ADS study program has been proposed and organized by Chinese Academy of Sciences. As part of the study program, concept design of a 10mA 1.5GeV Continue Wave (CW) superconducting proton linac has been started in the Institute of High Energy Physics (IHEP). In this paper the design of the 325MHz part of this linac, which is composed of a room temperature Radio Frequency Quadrupole (RFQ), eight 4-cell room temperature Cross bar H-type (CH) cavities and three kinds of spoke cavities with total number of 78, is presented. The main parameters and detailed beam dynamic simulation results of the CH and spoke section are introduced.