Paper | Title | Page |
---|---|---|
MOP005 | LLNL's Precision Compton Scattering Light Source | 58 |
|
||
Continued progress in accelerator physics and laser technology have enabled the development of a new class of tunable x-ray and gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable, monochromatic (< 0.4% rms spectral width) source driven by a compact, high-gradient X-band linac designed in collaboration with SLAC is under construction at LLNL. High-brightness (250 pC, 3.5 ps, 0.4 mm.mrad), relativistic electron bunches will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable γ-rays in the 0.5-2.5 MeV photon energy range. This gamma-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Fields of endeavor include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status will be discussed, along with important applications, including nuclear resonance fluorescence and high precision medical imaging. |
||
MOP025 | ACE3P Computations of Wakefield Coupling in the CLIC Two-beam Accelerator | 106 |
|
||
The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme. |
||
MOP073 | Numerical Validation of the CLIC/SwissFEL/FERMI Multi Purpose X Band Structure | 223 |
|
||
Currently an X-band traveling wave accelerator structure is fabricated in a collaboration between CERN, PSI and Sincrotrone Trieste (ST). PSI and ST will use it in their respective FEL projects, CERN will test break down limits and rates for high gradients. A special feature of this structure are two integrated wake field monitors monitoring the beam to structure alignment. The design used an uncoupled model for the fundamental mode, assuming the overall behavior to be the superposition of the individual components. For the wake field monitors, an equivalent circuit was used. This approach has been proven to produce valid structure designs. None the less it cannot approach the quality of a numerical electromagnetic simulation of the full structure, which is ideal for a validation capturing the differences between design models and the real cavity as e.g. internal reflections inside the structure or higher order dispersive terms altering the response of the wake field monitor. Using SLAC's family of massive parallel codes ACE-3P, first results are presented for the fundamental mode and the first transverse mode. They are compared with earlier simulations using simplified models. |
||
FR101 | Advances in Parallel Electromagnetic Codes for Accelerator Science and Development | 1028 |
|
||
SLAC has developed a comprehensive suite of 3D parallel electromagnetic codes based on the finite-element method to solve large-scale computationally challenging problem with high accuracy. The ACE3P (Advanced Computational Electromagnetic 3P) code suite includes the Omega3P eigenmode and S3P S-parameter solvers in the frequency domain for cavity prototyping and optimization, T3P time-domain solver for wakefields and impedances, Track3P particle tracking solver for simulating multipacting and dark current, and Pic3P Particle-in-cell code for RF Gun design. These capabilities with recent advances and the latest applications addressing important RF related accelerator phenomena will be presented. |
||
|