Advances in Parallel Electromagnetic Codes for Accelerator Science and Development

Kwok Ko Speaker: Arno Candel

Advanced Computations Group SLAC Sept. 17, 2010

Work supported by US DOE Offices of HEP, ASCR and BES under contract AC02-76SF00515.

Advanced Computations at SLAC & Collaborations

SLAC Team

Accelerator Physicists:

Arno Candel, Andreas Kabel, Kwok Ko, Zenghai Li, Cho Ng, Liling Xiao

Computational Scientists:

Lixin Ge, Rich Lee, Vineet Rawat, Greg Schussman

Accelerator Collaborators

H. Wang, F. Marhauser, C. Reece, R. Rimmer (TJNAF), D. Li (LBNL), I. Kourbanis, J. Dey (FNAL), J. Popielarski (MSU), E. Chojnacki (Cornell), W. Hartung, J. Holzbauer (NSCL), I. Syratchev, A. Grudiev, W. Wuensch (CERN), D. Kostin, J. Sekutowicz (DESY), M. Dehler (PSI), S. Molloy (RHUL)

Computational Science Collaborators

E. Ng, X. Li, I. Yamazaki (**TOPS**/LBNL), L. Dianchin (**ITAPS**/LLNL), K. Devine, E. Boman, (**ITAPS/CSCAPES**/SNL), D. Keyes (**TOPS**/Columbia), Q. Lu, M. Shephard (**ITAPS**/RPI), W. Gropp (**CScADS**/UIUC), O. Ghattas (**TOPS**/UT Austin), Z. Bai (UC Davis), K. Ma (**ISUV**/UC Davis), A. Pothen (**CSCAPES**/Purdue), T. Tautges (**ITAPS**/ANL)

3D Electromagnetic Codes for Accelerators

- MAFIA (CST) FD, http://www.cst.com
- Microwave studio (CST) FD, http://www.cst.com
- HFSS (Ansoft) FEM, http://www.ansoft.com
- ANSYS (Ansys, Inc.) FEM, http://www.ansys.com
- GdfidL FDTD, parallel, http://www.gdfidl.de

ACE3P (SLAC) - FEM, massively parallel (>10k CPUs)
 https://slacportal.slac.stanford.edu/sites/ard_public/bpd/acd/Pages/Default.aspx

Motivation to Design the ILC Cavity

International Linear Collider Cavity

Modeling challenges include:

- **Complexity** <u>HOM coupler</u> (fine features) versus cavity
 - **Problem size** <u>multi-cavity</u> structure (e.g. cryomodule)
- 0
- Speed
- Accuracy <u>10s of kHz mode separation out of GHz</u>
 - <u>Fast</u> turn around time to impact design

Parallel EM Code Development at SLAC

DOE's High Performance Computing Initiatives and SLAC support

- 1998–2001 HPC Accelerator Grand Challenge
- 2001-07 Scientific Discovery through Advanced Computation (SciDAC-1) -Accelerator Science and Technology (AST)
- 2007-12 Scientific Discovery through Advanced Computation (SciDAC-2) -Community Petascale Project for Accelerator Science and Simulation (ComPASS)

PhD Research:

1998 - Xiaowei Zhan, <u>Parallel electromagnetic field solvers using finite element methods with</u> <u>adaptive refinement and their application to wakefield computation of axisymmetric</u> <u>accelerator structure</u>, Stanford University.

2003 - Yong Sun, <u>The filter algorithm for solving large-scale eigenproblems from accelerator</u> <u>simulations</u>, Stanford University.

2009 - Sheng Chen, <u>Adaptive error estimators for electromagnetic field solvers</u>, Stanford University.

Parallel Higher-order Finite-Element Method

Strength of Approach – Accuracy and Scalability

- Conformal (tetrahedral) mesh with quadratic surface
- Higher-order elements (p = 1-6)
- Parallel processing (memory & speedup)

Accelerator Modeling with EM Code Suite ACE3P

Meshing - **CUBIT** for building CAD models and generating finite-element meshes. <u>http://cubit.sandia.gov</u>.

Modeling and Simulation – SLAC's suite of <u>conformal, higher-order, C++/MPI</u> <u>based parallel finite-element electromagnetic codes</u>

https://slacportal.slac.stanford.edu/sites/ard_public/bpd/acd/Pages/Default.aspx

ACE3P (<u>A</u> dvanced <u>C</u> omputational <u>E</u> lectromagnetics <u>3P</u>)					
Frequency Domain:	Omega3P – Eigensolver (damping)				
	S3P	– S-Parameter			
<u>Time Domain</u> :	T3P	 Wakefields and Transients 			
Particle Tracking:	Track3P	 Multipacting and Dark Current 			
EM Particle-in-cell:	Pic3P	 RF gun (self-consistent) 			

Postprocessing - **ParaView** to visualize unstructured meshes & particle/field data. <u>http://www.paraview.org/</u>.

Goal is the Virtual Prototyping of accelerator structures

ACE3P Capabilities

• Omega3P can be used to

- optimize <u>RF parameters</u>
- reduce peak surface fields,
- calculate HOM damping,
- find trapped modes & their heating effects,
- design dielectric & ferrite dampers, and others
- **S3P** calculates the transmission (S parameters) in open structures
- **T3P** uses a driving bunch to
 - evaluate the broadband impedance, trapped modes and signal sensitivity,
 - compute the wakefields of short bunches with a moving window,
 - simulate the beam transit in large 3D complex structures
- Track3P studies multipacting in cavities & couplers by identifying MP barriers, MP sites and the type of MP trajectories.
- **Pic3P** calculates the beam emittance in RF gun designs.

Benchmarks of ACE3P with Measurements

Omega3P - NLC Cell Design

Code validated in 3D NLC Cell design in 2001

- Omega3P was used to determine the accelerator dimensions for the JLC/NLC X-Band structures with accuracy orders of magnitude better than machining tolerance,
- The structure cells were high precision machined,
- Microwave QC verified cavity frequency accuracy to 0.01% relative error (1MHz out of 11 GHz) as required for beam stability.

Omega3P - LCLS RF Gun Cavity

Provided dimensions for LCLS RF gun cavity to meet design requirements:

- Reduce pulse heating by rounding of the z-coupling iris
- Minimize dipole and quadrupole fields via a racetrack dual-feed coupler design

Code validated by Measurement

RF parameter	Design	Measured	
fπ (GHz)	2.855987	2.855999	
Qo	13960	14062	
β	2.1	2.03	
Mode Sep. ∆f (MHz)	15	15.17	
Field balance	1	1	

S3P - S-Parameters for LCLS Injector Components

LCLS injector accelerator structure dual-feed coupler components

LCLS RF Gun Dual-window assembly

Track3P - Ichiro Cavity Multipacting

ICHIRIO cavity experienced

- Low achievable field gradient
- Long RF processing time

- > Hard barrier at <u>29.4 MV/m</u> field gradient with MP in the beampipe step
- First predicted by Track3P simulation

ICHIRO #0	Track3P MP simulation		
X-ray Barriers (MV/m)	Gradient (MV/m)	Impact Energy (eV)	
11-29.3 12-18	12	300-400 (6 th order)	
13, 14, 14-18, 13-27	14	200-500 (5 th order)	
(17, 18)	17	300-500 (3 rd order)	
20.8	21.2	300-900 (3 rd order)	
28.7, 29.0, 29.3, <mark>29.4</mark>	29.4	600-1000 (3 rd order)	

MP Trajectory @ 29.4 MV/m

Large-scale Accelerator Simulation requires Computational Science and High Performance Computing

Computational Science R&D under SciDAC

Mesh correction

Adaptive mesh refinement

400 350 300 250

Number of processors

HPC Resources for Accelerator Modeling

DOE Computing Resources @ LBNL and ORNL to meet SciDAC, Accelerator projects as well as the CW10 user community needs:

Computers -

NERSC at LBNL - Franklin Cray XT4, 38642 compute cores, 77 TBytes memory, 355 Tflops

NCCS at ORNL - Jaguar Cray XT5, 224,256 compute cores, 300 TBytes memory, 2331 TFlops 600 TBytes disk space

Allocations -

- NERSC Advanced Modeling for Particle Accelerators 1M CPU hours, renewable
 SciDAC ComPASS Project 1.6M CPU hours, renewable (shared)
 Frontiers in Accelerator Design: Advanced Modeling for Next-Generation BES Accelerators - 300K CPU hours, renewable (shared) each year
- NCCS Petascale Computing for Terascale Particle Accelerator: International Linear Collider Design and Modeling - **12M CPU hours** in FY10

ACE3P's advances focus on solving challenging problems in Accelerator Science and Development

Omega3P - Towards System Scale Modeling

SciDAC

T3P - Beam Transit in ILC Cryomodule

Visualization by Greg Schussman

T3P - Short Bunch Wakefields in ERL

T3P - Short Bunch Wakefields in ERL

Visualization by Greg Schussman

Page 21

T3P - CLIC Two-Beam Accelerator

T3P - CLIC PETS Bunch Transit

<u>Dissipation of transverse wakefields in</u> <u>dielectric loads: eps=13, tan(d)=0.2</u>

Impedance $Re(Z_T)$ [Ohm/mm/structure]

Transverse Wake [V/pC/mm/structure]

T3P - CLIC TDA24 Bunch Transit

T3P - RF Power Transfer in Coupled Structure

Track3P - Multipacting in SNS Cavity/HOM Coupler

SNS Cavity

Both Experiment and Simulation show same MP band:
 11 MV/m ~ 15MV/m

SNS Coupler

- SNS SCRF cavity experienced rf heating at HOM coupler
- 3D simulations showed MP barriers close to measurements

Track3P - Multipacting in SNS Cavity/HOM Coupler

Visualization by Greg Schussman

Pic3P - LCLS RF Gun

Temporal evolution of electron bunch and scattered self-fields Racetrack cavity design: Almost 2D drive mode. Cylindrical bunch allows benchmarking of 3D code Pic3P against 2D codes Pic2P and MAFIA

Pic3P LCLS RF Gun Emittance Convergence

Unprecedented Accuracy due to <u>Higher-Order</u> Particle-Field Coupling and <u>Conformal</u> Boundaries

Pic3P - SLAC/LLNL X-Band Gun

3D Emittance Calculations for Bunch with Offset

- f=11.424 GHz, 200 MV/m peak Ez on cathode
- Solenoid Bz_max = 0.5658 T at Z=6.3 cm
- Beer can (r=0.5 mm, 2 ps flat top, 0.4 ps rise time), 250 pC
- Bunch injected 30 degrees after zero-crossing

4D Emittance vs <Z>

<u>Solving the CEBAF BBU</u> - Joint Efforts from Accelerator Physics + Experiment + Computational Science + Computing

CEBAF BBU - Solving the Inverse Problem

High Q modes Deformed 1.E+09 ideal 1.E+08 cav5-meas 1.E+07 1.E+06 X Ø 1.E+05 Ideal CEBAF 12-GeV upgrade – 1.E+04 Deformed 1.E+03 Beam breakup (BBU) observed at beam currents 1.E+02 well below design threshold 2180 2030 2080 2130

- Used measured RF parameters such as f, Q_{ext}, and field profile as inputs
- Solutions to the inverse problem identified the main cause of the BBU instability: Cavity is 8 mm shorter – predicted and confirmed later from measurements
- The fields of the 3 abnormally high Q modes are shifted away from the coupler
- Showed that experimental diagnosis, advanced computing and applied math worked together to solve a real world problem as intended by SciDAC

Omega3P

F (MHz)

In collaboration with TJNAF – R. Rimmer, H. Wang

Optimizing the Choke Mode Cavity Performance

The procedure based on nonlinear iterations with Newton type algorithms that solves the Jlab **inverse problem** can be used to **optimize** the performance of the choke mode cavity in reducing the wakefield effects of higher-order dipole modes

ACE3P User Community - CW10 Code Workshop

SLAC NATIONAL ACCELERATOR LABORATORY

CW10 @ SLAC

CW10 ACCELERATOR CODE WORKSHOP

Home SLAC ACCESS Agenda All visitors must have a valid photo ID to enter the Laboratory. The SLAC Attendees Main Gate is open 24 hours a day, 7 Software days a week. Workshop Materials MAPS AND DIRECTIONS SLAC Computer Accounts CLIC PETS Structure » More Information Accelerator Code Workshop (CW10) at SLAC for the SLAC GUEST HOUSE ACE3P (Advanced Computational Electromagnetics 3P) Code Suite organized by the Advanced Computations Group (ACG) » More Information September 20-22, 2010 Date — Time — See agenda Place — SLAC National Accelerator Laboratory Menlo Park, California Contact — ACD-CW10@slac.stanford.edu 650-926-2864 650-926-4603 (FAX)

SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Dept. of Energy

(http://www-conf.slac.stanford.edu/CW10/default.asp)

CW10 Attendees & Agenda

CW10 @ SLAC

Hor

CW10 ACCELERATOR CO	DE WORKSHOP	SLAC NATIONAL AC	AC NATIONAL ACCELERATOR LABORATORY		
Home	A 44 3				
lgenda	Attendees				
Attendees	Institution	Name	Email		
oftware	Beam Power	Jing Zhou	jzhou@beampower.com		
Workshop Materials SLAC Computer Accounts NERSC Computer Accounts	CERN	Oleksiy Kononenko Erik Adli	Oleksiy.Kononenko@cern.ch erik.adli@cern.ch		
	Cornell	Sergey Belomestnykh Vadim Veshcherevich Yi Xie Sam Posen Valery Shemelin	sab24@cornell.edu ygv1@cornell.edu yx39@cornell.edu samposen@gmail.com ys65@cornell.edu		
	FAR-TECH	Nick Barov	barov@far-tech.com		
	IHEP	Jiyuan Zhai	<u>zhaijy@ihep.ac.cn</u>		
	JLab	Gary Cheng	cheng@jlab.org		
	LBNL	Gang Huang	GHuang@lbl.gov		
	LLNL	Scott Anderson Roark Marsh	anderson131@llnl.gov marsh19@llnl.gov		
	NSCL	John Popielarski Jeremiah Holzbauer	popielar@nscl.msu.edu holzbaue@nscl.msu.edu		
	ODU	Subashini De Silva	sdesilva@jlab.org		
	PSI	Micha Dehler Alessandro Citterio	<u>micha.dehler@psi.ch</u> <u>Alessandro.Citterio@psi.ch</u>		
	SFTC Daresbury	Peter McIntosh Philippe Goudket	peter.mcintosh@stfc.ac.uk philippe.goudket@stfc.ac.uk		
	SLAC	Stephen Weathersby Joel England Valery Dolgashev Chris Nantista Aaron Jensen Kai Tian Stephen Gierman Jeffrey Neilson Johnny Ng Ziran Wu	spw@slac.stanford.edu england@slac.stanford.edu Dolgashev@slac.stanford.edu aaron@slac.stanford.edu ktian@slac.stanford.edu gierman@slac.stanford.edu jeff@slac.stanford.edu jng@slac.stanford.edu wzr@slac.stanford.edu		
	Univ. of London	Steve Molloy Joshi Nirav	stephen.molloy@rhul.ac.uk J.Nirav@rhul.ac.uk		
	Univ. of Manchester	Roger Jones Ian Shinton	rmj@slac.stanford.edu ian.shinton@manchester.ac.ul		
	Univ. of Oslo	Kyrre Ness Sjøbæk	k.n.sjobak@fys.uio.no		

CW10 @ SLAC

Home

Agend

Attend

Softw

Works

SLAC

NERS

ACCELERATOR CODE WORKSHOP		SLAC NATIONAL ACCELERATOR LABORATORY					
a		Agenda					
ees		All sessions are 1 hr 45 min					
are							
hop Materials		9/22 Monday	9/23 Tuesday	9/24 Wednesday			
Computer Accounts				Parallel Sessions			
C Computer Accounts	8 30-10 15	Intro/CUBIT	Track3P	Pic3P			
e computer Accounts	0.00 10.10	Introveobili	TRONO	Applications			
	10.15-10.30	break	break	break			
	10 20 12 15	ACE2D/Dara\/iow	P/ParaView Track3P	TEM3P			
	10.50-12.15	ACCOPTENT		Applications			
	12.15-1.30	lunch	lunch	CW10 Ends			
	1.30-3.15	Omega3P/S3P	ТЗР				
	3.15-3.30	break	break				
	3.30-5.15	Omega3p/S3P	ТЗР				

SLACS SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Dept. of Energy

- Parallel finite-element (FE) electromagnetics (EM) method demonstrates its strengths in high-fidelity, high-accuracy modeling for accelerator design, optimization and analysis.
- ACE3P code suite, developed under DOE SciDAC and SLAC support, has been benchmarked and used in a wide range of applications in Accelerator Science and Development.
- Advanced capabilities in ACE3P's modules Omega3P, S3P, T3P, Track3P, and Pic3P have enabled challenging problems to be solved that benefit accelerators worldwide.
- Computational science and high performance computing are essential to tackling real world problems through simulation.
- The ACE3P User Community is formed to share this resource and experience and we welcome the opportunity to collaborate on projects of common interest.

