Author: Piot, P.
Paper Title Page
TUPEA071 THz Bench Tests of a Slab-symmetric Dielectric Waveguide 1292
 
  • F. Lemery, H. Panuganti, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • D. Mihalcea, P. Piot
    Fermilab, Batavia, USA
  • P. Stoltz
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work is supported by DTRA contract HDTRA1-10-1-0051 and by the U.S. DOE contracts DE-FG02-08ER41532 and DE-AC02-07CH11359.
Di­elec­tric-lined wave­guides (DLW) are be­com­ing more pop­u­lar for beam dri­ven ac­cel­er­a­tion ap­pli­ca­tions. An ex­per­i­ment to demon­strate beam-dri­ven ac­cel­er­a­tion using a slab-sym­met­ric di­elec­tric-lined wave­guide dri­ven by a flat beam is in prepa­ra­tion at the Ad­vanced Su­per­con­duct­ing Test Ac­cel­er­a­tor (ASTA) at Fer­mi­lab. In this paper we char­ac­ter­ize the struc­ture using a THz pulse ob­tained from op­ti­cal rec­ti­fi­ca­tion using an am­pli­fied laser pulse. After prop­a­ga­tion through the DLW struc­ture, the THz pulse is an­a­lyzed using a Michel­son in­ter­fer­om­e­ter and sin­gle-shot elec­tro-op­ti­cal imag­ing. Data for var­i­ous gap size will be pre­sented.
 
 
TUPEA072 Toward a Dielectric-Wakefield Energy Doubler at the Fermilab's Advanced Superconducting Test Accelerator 1295
 
  • F. Lemery, D. Mihalcea, P. Piot, C.R. Prokop
    Northern Illinois University, DeKalb, Illinois, USA
  • P. Piot, Y.-E. Sun
    Fermilab, Batavia, USA
  • P. Stoltz
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work is supported by DTRA contract HDTRA1-10-1-0051 and by the U.S. DOE contracts DE-FG02-08ER41532 and DE-AC02-07CH11359.
The Ad­vanced Su­per­con­duct­ing Test Ac­cel­er­a­tor (ASTA), presently under con­struc­tion at Fer­mi­lab, will pro­duce high-charge (~<3 nC) elec­tron bunches with en­er­gies rang­ing from 50 to even­tu­ally 750 MeV. The fa­cil­ity is based on a su­per­con­duct­ing linac ca­pa­ble of pro­duc­ing up to 3000 bunches in 1-ms macropulses re­peated at 5 Hz. In this paper we ex­plore the use of a short di­elec­tric-lined-wave­guide (DLW) linac to sig­nif­i­cantly in­crease the bunch en­ergy. The method con­sists in (1) using ad­vanced phase space ma­nip­u­la­tion tech­niques to shape the beam dis­tri­b­u­tion and en­hance the trans­former ratio, and (2) op­ti­mize the gen­er­a­tion and ac­cel­er­a­tion of a low-charge wit­ness bunches. Start-to-end sim­u­la­tions of the pro­posed con­cept are pre­sented. This DLW mod­ule could also be used to test some as­pects of a re­cently pro­posed con­cept for a multi­user short-wave­length free-elec­tron laser uti­liz­ing a se­ries of DLW linacs*.
* C. Jing et al., “A Compact Soft X-ray Free-Electron Laser Facility based on a Dielectric Wakefield Accelerator”, Advanced Photon Source LS Note LS-332, Argonne National Laboratory (2012).
 
 
TUPEA073 Performances of VORPAL-GPU Slab-symmetric DLW 1298
 
  • F. Lemery, K. Duffin, N. Karonis, D. Mihalcea, P. Piot, J. Winans
    Northern Illinois University, DeKalb, Illinois, USA
  • P.J. Mullowney, P. Stoltz
    Tech-X, Boulder, Colorado, USA
  • P. Piot
    Fermilab, Batavia, USA
 
  Funding: HDTRA1-10-1-0051, DOE(Grant No will be specified later)
GPU-based com­put­ing has gained pop­u­lar­ity in re­cent years due to its grow­ing soft­ware sup­port and greater pro­cess­ing ca­pa­bil­i­ties than its CPU coun­ter­part.  GPU com­put­ing was re­cently added in the fi­nite-dif­fer­ence time-do­main pro­gram VOR­PAL. In this paper we carry elec­tro­mag­netic sim­u­la­tions and op­ti­miza­tion of a flat beam pass­ing through a slab-sym­met­ric di­elec­tric-lined wave­guide (DLW). We use this sim­u­la­tion model to ex­plore the scal­ing of the GPU ver­sion of VOR­PAL on a new TOP1000-grade hy­brid GPU/CPU com­puter clus­ter avail­able at North­ern Illi­nois Uni­ver­sity.
 
 
TUPWO060 Flat Electron Bunch Compression at the Advanced Superconducting Test Accelerator 2003
 
  • C.R. Prokop, D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • B.E. Carlsten
    LANL, Los Alamos, New Mexico, USA
  • P. Piot, Y.-E. Sun
    Fermilab, Batavia, USA
 
  Funding: This work is supported by LANL LDRD #20110067DR and by the U.S. DOE contracts DE-FG02-08ER41532 and DE-AC02-07CH11359.
The gen­er­a­tion of flat beam using round-to-flat beam con­ver­sion of an in­com­ing canon­i­cal-an­gu­lar-mo­men­tum dom­i­nated elec­tron beam could have im­por­tant ap­pli­ca­tion in the field of ad­vanced ac­cel­er­a­tion tech­niques and ac­cel­er­a­tor-based light source. In this paper we ex­plore the tem­po­ral com­pres­sion of flat beams and es­pe­cially com­pare the re­sult­ing phase space di­lu­tions with the case of round beam. Fi­nally, we pro­pose and de­tail a pos­si­ble ex­per­i­ment to in­ves­ti­gate the flat-beam bunch com­pres­sion at the Ad­vanced Su­per­con­duct­ing Test Ac­cel­er­a­tor cur­rently in con­struc­tion at Fer­mi­lab.
 
 
THOBB101 Transverse-to-longitudinal Emittance Exchange at the Fermilab Advanced Superconducting Test Accelerator 3103
 
  • C.R. Prokop, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • B.E. Carlsten
    LANL, Los Alamos, New Mexico, USA
  • M.D. Church, P. Piot
    Fermilab, Batavia, USA
 
  Funding: LANL LDRD program, project 20110067DR U.S. DoE under Contract No. DE-FG02-08ER41532 with Northern Illinois University and under Contract No. DE-AC02-07CH11359 the Fermi Research Alliance, LLC.
Ear­lier ex­per­i­ments at Fer­mi­lab’s A0 Pho­toin­jec­tor Lab­o­ra­tory demon­strated suc­cess­ful trans­verse-to-lon­gi­tu­di­nal emit­tance ex­change (EEX) using a trans­verse-de­flect­ing cav­ity (TDC) lo­cated be­tween two iden­ti­cal doglegs. Such a de­sign has the dis­ad­van­tage of trans­versely dis­plac­ing the beam. An in­ter­est­ing al­ter­na­tive is an EEX beam­line de­signed out of a vari­able R56 bunch com­pres­sor chi­cane. In this paper, we pre­sent de­sign and sim­u­la­tion test­ing for a chi­cane-based EEX for even­tual im­ple­men­ta­tion at Fer­mi­lab’s Ad­vanced Su­per­con­duct­ing Test Ac­cel­er­a­tor. We ex­plore sev­eral ad­vanced EEX con­cepts, in­clud­ing bunch cur­rent pro­file shap­ing, bunch com­pres­sion, and dis­per­sion-boost­ing to relax the re­quire­ments on TDC power and cool­ing.
 
slides icon Slides THOBB101 [2.582 MB]  
 
TUPEA072 Toward a Dielectric-Wakefield Energy Doubler at the Fermilab's Advanced Superconducting Test Accelerator 1295
 
  • F. Lemery, D. Mihalcea, P. Piot, C.R. Prokop
    Northern Illinois University, DeKalb, Illinois, USA
  • P. Piot, Y.-E. Sun
    Fermilab, Batavia, USA
  • P. Stoltz
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work is supported by DTRA contract HDTRA1-10-1-0051 and by the U.S. DOE contracts DE-FG02-08ER41532 and DE-AC02-07CH11359.
The Ad­vanced Su­per­con­duct­ing Test Ac­cel­er­a­tor (ASTA), presently under con­struc­tion at Fer­mi­lab, will pro­duce high-charge (~<3 nC) elec­tron bunches with en­er­gies rang­ing from 50 to even­tu­ally 750 MeV. The fa­cil­ity is based on a su­per­con­duct­ing linac ca­pa­ble of pro­duc­ing up to 3000 bunches in 1-ms macropulses re­peated at 5 Hz. In this paper we ex­plore the use of a short di­elec­tric-lined-wave­guide (DLW) linac to sig­nif­i­cantly in­crease the bunch en­ergy. The method con­sists in (1) using ad­vanced phase space ma­nip­u­la­tion tech­niques to shape the beam dis­tri­b­u­tion and en­hance the trans­former ratio, and (2) op­ti­mize the gen­er­a­tion and ac­cel­er­a­tion of a low-charge wit­ness bunches. Start-to-end sim­u­la­tions of the pro­posed con­cept are pre­sented. This DLW mod­ule could also be used to test some as­pects of a re­cently pro­posed con­cept for a multi­user short-wave­length free-elec­tron laser uti­liz­ing a se­ries of DLW linacs*.
* C. Jing et al., “A Compact Soft X-ray Free-Electron Laser Facility based on a Dielectric Wakefield Accelerator”, Advanced Photon Source LS Note LS-332, Argonne National Laboratory (2012).
 
 
TUPEA073 Performances of VORPAL-GPU Slab-symmetric DLW 1298
 
  • F. Lemery, K. Duffin, N. Karonis, D. Mihalcea, P. Piot, J. Winans
    Northern Illinois University, DeKalb, Illinois, USA
  • P.J. Mullowney, P. Stoltz
    Tech-X, Boulder, Colorado, USA
  • P. Piot
    Fermilab, Batavia, USA
 
  Funding: HDTRA1-10-1-0051, DOE(Grant No will be specified later)
GPU-based com­put­ing has gained pop­u­lar­ity in re­cent years due to its grow­ing soft­ware sup­port and greater pro­cess­ing ca­pa­bil­i­ties than its CPU coun­ter­part.  GPU com­put­ing was re­cently added in the fi­nite-dif­fer­ence time-do­main pro­gram VOR­PAL. In this paper we carry elec­tro­mag­netic sim­u­la­tions and op­ti­miza­tion of a flat beam pass­ing through a slab-sym­met­ric di­elec­tric-lined wave­guide (DLW). We use this sim­u­la­tion model to ex­plore the scal­ing of the GPU ver­sion of VOR­PAL on a new TOP1000-grade hy­brid GPU/CPU com­puter clus­ter avail­able at North­ern Illi­nois Uni­ver­sity.
 
 
TUPWO060 Flat Electron Bunch Compression at the Advanced Superconducting Test Accelerator 2003
 
  • C.R. Prokop, D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • B.E. Carlsten
    LANL, Los Alamos, New Mexico, USA
  • P. Piot, Y.-E. Sun
    Fermilab, Batavia, USA
 
  Funding: This work is supported by LANL LDRD #20110067DR and by the U.S. DOE contracts DE-FG02-08ER41532 and DE-AC02-07CH11359.
The gen­er­a­tion of flat beam using round-to-flat beam con­ver­sion of an in­com­ing canon­i­cal-an­gu­lar-mo­men­tum dom­i­nated elec­tron beam could have im­por­tant ap­pli­ca­tion in the field of ad­vanced ac­cel­er­a­tion tech­niques and ac­cel­er­a­tor-based light source. In this paper we ex­plore the tem­po­ral com­pres­sion of flat beams and es­pe­cially com­pare the re­sult­ing phase space di­lu­tions with the case of round beam. Fi­nally, we pro­pose and de­tail a pos­si­ble ex­per­i­ment to in­ves­ti­gate the flat-beam bunch com­pres­sion at the Ad­vanced Su­per­con­duct­ing Test Ac­cel­er­a­tor cur­rently in con­struc­tion at Fer­mi­lab.
 
 
THOBB101 Transverse-to-longitudinal Emittance Exchange at the Fermilab Advanced Superconducting Test Accelerator 3103
 
  • C.R. Prokop, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • B.E. Carlsten
    LANL, Los Alamos, New Mexico, USA
  • M.D. Church, P. Piot
    Fermilab, Batavia, USA
 
  Funding: LANL LDRD program, project 20110067DR U.S. DoE under Contract No. DE-FG02-08ER41532 with Northern Illinois University and under Contract No. DE-AC02-07CH11359 the Fermi Research Alliance, LLC.
Ear­lier ex­per­i­ments at Fer­mi­lab’s A0 Pho­toin­jec­tor Lab­o­ra­tory demon­strated suc­cess­ful trans­verse-to-lon­gi­tu­di­nal emit­tance ex­change (EEX) using a trans­verse-de­flect­ing cav­ity (TDC) lo­cated be­tween two iden­ti­cal doglegs. Such a de­sign has the dis­ad­van­tage of trans­versely dis­plac­ing the beam. An in­ter­est­ing al­ter­na­tive is an EEX beam­line de­signed out of a vari­able R56 bunch com­pres­sor chi­cane. In this paper, we pre­sent de­sign and sim­u­la­tion test­ing for a chi­cane-based EEX for even­tual im­ple­men­ta­tion at Fer­mi­lab’s Ad­vanced Su­per­con­duct­ing Test Ac­cel­er­a­tor. We ex­plore sev­eral ad­vanced EEX con­cepts, in­clud­ing bunch cur­rent pro­file shap­ing, bunch com­pres­sion, and dis­per­sion-boost­ing to relax the re­quire­ments on TDC power and cool­ing.
 
slides icon Slides THOBB101 [2.582 MB]