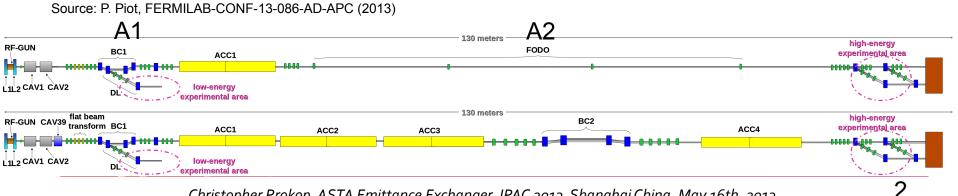


Transverse-to-Longitudinal Emittance Exchanger at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

C.R. Prokop¹, P. Piot^{1,2}, B.E. Carlsten³, M. Church² ¹ Department of Physics, Northern Illinois University ² Fermi National Accelerator Laboratory ³ Los Alamos National Laboratory

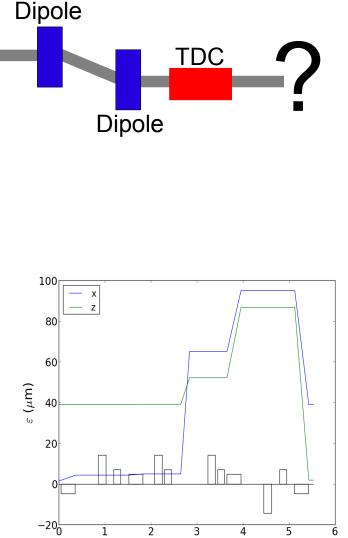

ASTA

- Electron linac for Advanced Accelerator R&D being built at Fermilab.
- Construction in stages:
 - 50 MeV injector ٠
 - 1~4 cryomodules, for energies ranging from 300 MeV to ~1 GeV
 - Room for user-experiments at two energies

parameter	nominal value	range	units
energy exp. A1	50	[5, 50]	MeV
energy exp. A2	$\sim 300 \text{ (stage 1)}$	[50, 820]	MeV
bunch charge Q	3.2	[0.02, 20]	nC
bunch frequency f_b	3	see $^{(a)}$	MHz
macropulse duration τ	1	≤ 1	\mathbf{ms}
macropulse frequency f_{mac}	5	[0.5, 1, 5]	Hz
num. bunch per macro. N_b	3000	$[1,3000]^{(b)}$	_
trans. $emittance^{(b)}$	$\varepsilon_{\perp} \simeq 2.11 Q^{0.69}$	[0.1, 100]	$\mu { m m}$
long. $emittance^{(b)}$	$\varepsilon_{ } \simeq 30.05 Q^{0.84}$	[5, 500]	$\mu { m m}$
peak current $\hat{I}^{(c)}$	~ 3	≤ 10	kA

Source: J. Leibfritz, Proceedings of IPAC2012, p. 58

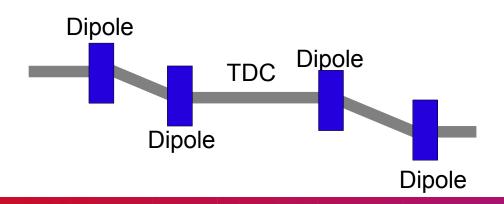
Why an Emittance Exchanger?


- Emittances (longitudinal (L), horizontal (H), and vertical (V)) generally distinct
- Emittance partition depends on applications
 - Different experiments at ASTA have varying requirements for each of the three emittances
 - Emittances evolve independently in each degree of freedom:
 - Coherent Synchrotron Radiation -> L,H
 - Transverse Space Charge -> H,V
 - Longitudinal Space Charge -> L
- Shaping current profiles is hard...
 - No ballistic bunching
 - Acceleration follows RF fields, needs magnetic compression to create spatial change.
- ... but shaping transverse distributions is much easier!
 - Masks, quadrupoles, laser spot, etc..

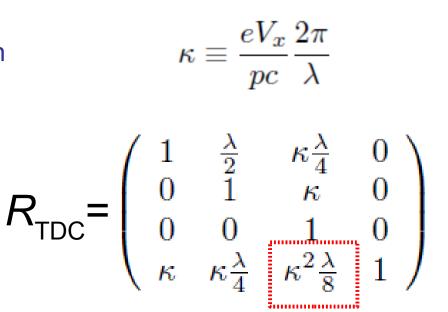
Basics of Emittance Exchangers

 A transverse deflecting cavity (TDC) in dispersive region allows exchange of longitudinal and transverse phase spaces (P. Emma, et. al, PRSTAB 9, 100702 (2006))

$$R_{EEX} = \begin{pmatrix} 0 & 0 & R_{15} & R_{16} \\ 0 & 0 & R_{25} & R_{26} \\ R_{51} & R_{52} & 0 & 0 \\ R_{61} & R_{62} & 0 & 0 \end{pmatrix}$$

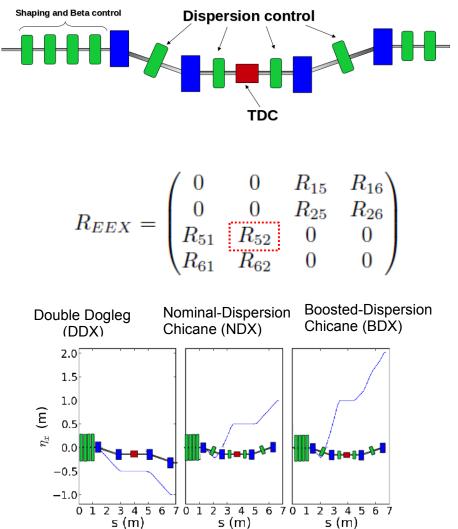

- 4x4 transfer matrix must be block-anti-diagonal.
- Can map specific transverse shaping into current profiles via laser masking, flat beam transformations (TUPWO 060), collimation, quadrupoles, etc...
 - Triangular Hole → Ramped Bunch
 - Slits → Bunch Train
 - Big Hole & Little Hole → Drive Bunch & Witness Bunch

- Block-anti-diagonality has several key requirements:
 - TDC strength inverse of dispersion
 - Many choices for downstream line


$$\kappa \equiv \frac{eV_x}{pc} \frac{2\pi}{\lambda} = -\frac{1}{\eta_x}$$

- Identical Dogleg- used in proof of concept experiment at Fermilab's A0 photoinjector (J. Ruan, et. al, Phys. Rev. Lett. 106, 244801 (2011), Y.-E. Sun, et. al, Phys. Rev. Lett. 105, 234801 (2010))
- Chicane with extra quadrupoles (variable *R*₅₆, dispersion)
- "Boost" dispersion to larger values, reduce TDC field strength and power/cooling requirements!

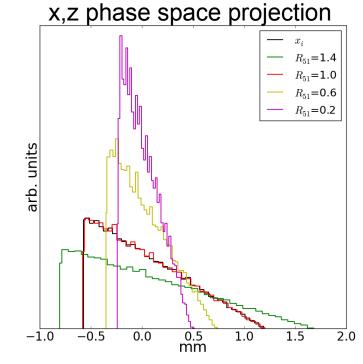
Imperfections in the Exchange


- •Finite-thickness of TDC introduces spurious diagonal terms in EEX
 - Can be compensated with accelerating cavity (Zholents, PAC11)
- Collective effects- mutual forces between electrons
 - Space charge (SC)
 - Coherent Synchrotron Radiation (CSR)
- Second Order Effects

Next-Generation In-line EEX Design

- In-line Chicane EEX has several benefits.
- Remains in-line with initial beam.
 - Similar doglegs, flipped angles.
- Dispersion is controlled, and potentially boosted.
 - Can aim to arbitrarily high values, but...
- Additional quads shape final distribution, controlling *R*₅₁ and *R*₅₂. Accurately converts horizontal phase space into current profile, with scaling.
 - Slits, masks, collimation may also be used for custom shaping.
- *R*₆₅ of TDC canceled by accelerating mode cavity.
- Dispersion can be "boosted" to larger values (here, nominal=0.5m). Requires weaker field, less power/cooling.
 - Strong quads in chicane make shaping/fitting more difficult.
- Simulations performed in Elegant, and Impact-Z for SC+CSR

$$\kappa \equiv \frac{eV_x}{pc} \frac{2\pi}{\lambda} = -\frac{1}{\eta_x}$$

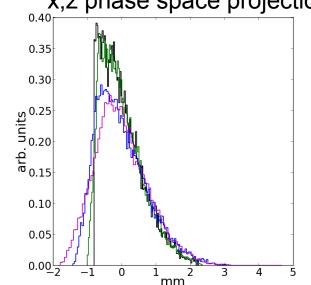

Performance and Shaping of Nominal-Dispersion Chicane

- Two criteria for discussing the quality of the emittance exchange.
 - Quantitative: Numeric exchange of the transverse and longitudinal emittances.

$$\mathcal{F}_{zx} \equiv rac{arepsilon_{zf}}{arepsilon_{xi}} \quad \mathcal{F}_{xz} = rac{arepsilon_{xf}}{arepsilon_{zi}}$$

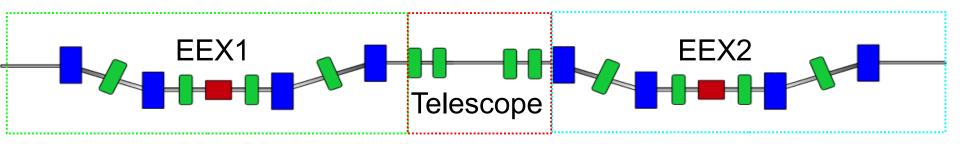
• Qualitative: Preservation of the transverse shaping in to the longitudinal plane.

R ₅₁	R ₅₂	F _{xz}	F _{zx}
0.21	-0.025	1.04	1.27
0.6	0.0	1.03	1.25
1.0	0.0	1.16	1.66
1.4	0.0	1.28	2.134

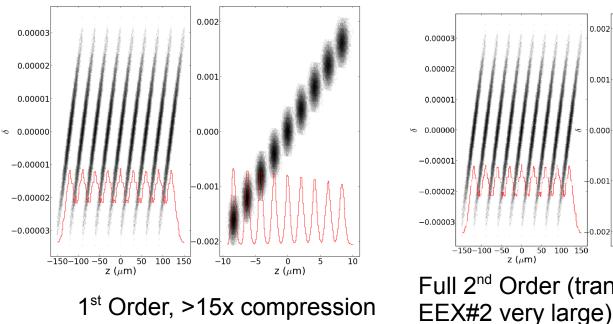


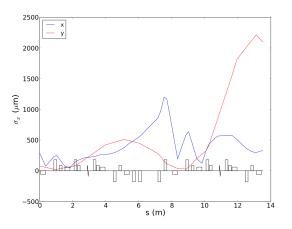
Collective Effects & Boosting

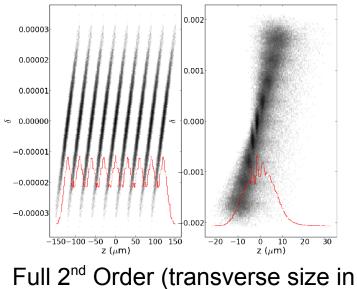
- Both SC and CSR are important, particularly when aiming for compression.
- Overall shape may be retained (here, horizontal Gaussian cut in half as quick approximation of ramped bunch) C. Prokop, NIM A,719, pp 17–28
- Finer structures may become washed out.
- Boosting-dispersion (BDX) makes shaping more difficult than nonboosted (NDX, DDX)
 x,z phase space projection


Table 1: Emittance Exchange Values with IMPACT-Z

Des.	Q (nC)	η_x	R_{51}	R_{52}	\mathcal{F}_{zx}	\mathcal{F}_{xz}
DDX	0.0	0.5	-0.339	-0.259	1.33	1.00
DDX	1.6	0.5	-0.339	-0.259	5.51	1.65
NDX	0.0	0.5	1.00	-0.013	1.25	1.01
NDX	1.6	0.5	1.00	-0.013	4.24	1.67
BDX	0.0	1.0	1.17	-0.385	1.55	1.01
BDX	1.6	1.0	1.17	-0.385	5.09	1.63
BDX	0.0	1.5	1.04	-0.810	5.76	1.13
BDX	1.6	1.5	1.04	-0.810	8.85	1.50

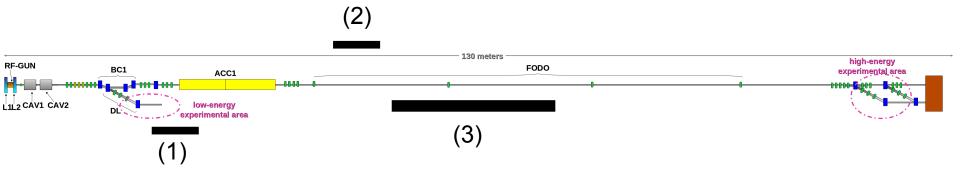

Double Emittance Exchanger


- Two EEXs placed in sequence, multiple uses and designs.
 - Bunch compressor without initial energy chirp!
- Three part process: (Zholents & Zolotorev, ANL/APS/LS-327 (2011))
 - EEX Longitudinal Modulation -> Transverse Beamlets
 - "Focus" the Transverse Modulation
 - EEX Transverse Beamlets -> Compressed Longitudinal Modulation
- Simplified Design
 - No Pre/Post quads for R_{51} and R_{52} control. We use innate values of basic EEX. Set C-S parameters at EEX1 start.
 - Linked with telescope that matches several requirements at entrance of EEX2...



Double EEX results

- We match for C-S parameters of single beamlet, then track the full train through the same quadrupole settings.
- Aim to shape in horizontal to create upright bunches
 - Keep vertical constrained.
- "Flat" beam emittances to mitigate vertical beam size
- Poor fit, 15x compression, still much room for improvement.



Implementation at ASTA

- (1) Low-energy experimental line (50 MeV)
 - Would be first-ever chicane EEX.
- (2) Use same basic design at 300+ MeV after CM1.
 - Could be used as first stage of dielectric wakefield "energy doubler" (F. Lemery, this conference)
- (3) Potential Double EEX
 - Still many designs to consider.

Summary

- Design of in-line Chicane Emittance Exchanger
 - Advanced Longitudinal Shaping (Control of R 51 and R 52)
 - Boosted Dispersion → Iower TDC requirements.
 - Collective Effects reduce quality of exchange and wash-out details.
- Early design and simulation for a double emittance exchanger.
- Eventual implementation at ASTA.