Paper | Title | Page |
---|---|---|
TUOAB102 | Project X Injector Experiment: Goals, Plan and Status | 1093 |
|
||
Funding: This work was supported by the U.S. DOE under Contract No.DE-AC02-07CH11359 A multi-MW proton facility, Project X, has been proposed and is currently under development at Fermilab. We are carrying out a program of research and development aimed at integrated systems testing of critical components comprising the front end of the Project X. This program is being undertaken as a key component of the larger Project X R&D program. The successful completion of this program will validate the concept for the Project X front end, thereby minimizing a primary technical risk element within Project X. Integrated systems testing, known as the Project X Injector Experiment (PXIE), will be accomplished with a new test facility under construction at Fermilab and will be completed over the period FY12- 17. PXIE will include an H− ion source, a CW 2.1-MeV RFQ and two superconductive RF (SRF) cryomodules providing up to 25 MeV energy gain at an average beam current of 1 mA (upgradable to 2 mA). Successful systems testing will also demonstrate the viability of novel front end technologies that are expected find applications beyond Project X. |
||
![]() |
Slides TUOAB102 [1.615 MB] | |
WEPWA068 | Design Concepts for the NGLS Linac | 2271 |
|
||
The Next Generation Light Source (NGLS) is a design concept for a multibeamline soft x-ray FEL array powered by a ~2.4 GeV CW superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. This paper describes the concepts under development for a linac operating at 1.3 GHZ and based on minimal modifications to the design of ILC cryomodules in order to leverage the extensive R&D that resulted in the ILC design. Due to the different nature of the two applications, particular attention is given here to high loaded Q operation andμphonics control, as well as high reliability and expected up time. | ||