Author: Kaufman, J.J.
Paper Title Page
WEPWO066 Frequency Control in the Cornell-ERL Main-Linac Cavity Production 2453
 
  • V.D. Shemelin, B. Bullock, P.R. Carriere, B. Clasby, R. Eichhorn, B. Elmore, J.J. Kaufman, J. Sears
    CLASSE, Ithaca, New York, USA
 
  Funding: NSF award DMR-0807731
Cavity fabrication can be broken down into three main stages: deep-drawing cups, welding the cups in pairs to obtain “dumbbells” and end groups, and, finally, welding the obtained components into a completed cavity. Frequency measurements and precise machining were implemented after the second stage. A custom RF fixture and data acquisition system were used for this purpose. The system comprised of a mechanical press with RF contacts, a network analyzer, a load cell and custom LabVIEW and MATLAB scripts. To extract the individual frequencies of the cups from these measurements, algorithm of calculations was developed. Corrections for the ambient environment were also incorporated into the measurement protocol. Two 7-cell 1.3 GHz cavities were produced with high field flatness immediately after fabrication.
 
 
THPFI090 Accuracy of Measurements of ε and μ of Lossy Materials 3499
 
  • V.D. Shemelin, J.J. Kaufman
    CLASSE, Ithaca, New York, USA
 
  Funding: NSF award DMR-0807731
Measurements of samples of lossy ceramic and ferrites for Higher Order Mode Loads are performed routinely in our Lab. Some difference of results for different batches of materials can be explained not only by technological deviations in the material production but also by errors in the dimensions of the measured samples. Simulations with MicroWave Studio for samples in the form of coaxial washers in the frequency range from 1 to 12.4 GHz helped to define the main sources of errors and to improve accuracy of measurements.