Paper | Title | Page |
---|---|---|
WEOAMH02 | Recent Progress of KEKB | 2372 |
|
||
KEKB is an e-/e+ collider for the study of B physics and is also used for machine studies for future machines. The peak luminosity of KEKB, which is the world-highest value, has been still increasing. This report summarizes recent progress at KEKB. |
||
|
||
THPEA015 | L-band Accelerator System in Injector Linac for SuperKEKB | 3708 |
|
||
In order to improve the capture efficiency of the positron produced at the target in present KEKB Injector linac, a new project has just started to utilize L-band (1298MHz) RF. The present S-band (2856MHz) capture cavities and successive three RF units are to be replaced by those of L-band. The specifications of the L-Band system should fulfill the demands of a positron damping ring downstream which is also to be under study for super KEKB project. Besides the whole design work of the system, our present ongoing work is rather concentrated on establishing L-Band RF source and accelerating structures. |
||
THPD004 | Design of the Positron Transport System for SuperKEKB | 4284 |
|
||
SuperKEKB, the upgrade plan of KEKB, aims to boost the luminosity up to 8·1035 /cm2/s. The beam energy of the Low Energy Ring (LER) is 4 GeV for positrons, and that of the High Energy Ring is 7 GeV for electrons. SuperKEKB is designed to produce low emittance beams. The horizontal and vertical emittances of the injection beams are 4nm and 1nm, respectively, which are one or two orders smaller than those of KEKB. The positron injector system consists of the source, capture system, L-band and S-band linacs, collimators, an energy compression system (ECS), a 1-GeV damping ring, a bunch compression system (BCS), S-band and C-band linacs, and a beam transport line into the LER. This paper reports a design of the positron beam transport system from L-band linacs to SuperKEKB. |
||
THPD007 | The Linac Upgrade Plan for SuperKEKB | 4290 |
|
||
The next generation B-factory 'SuperKEKB' project whose target luminosity is 8 ×1035 cm-2s-1 is under consideration. A 'nano-beam scheme' is introduced to the SuperKEKB. In the scheme, an electron beam (Energy = 7 GeV, Charge = 3-4 nC/bunch, Vertical emittance =2.8 x 10-5 m) and a positron beam (Energy = 4 GeV, Charge = 4 nC/bunch, Vertical emittance = 1.6 x 10-5 m), are required at the end of injector linac. They are quite challenging targets for the present linac. In order to meet the requirements, we will introduce some new components to the linac. They are a photo-cathode RF gun for an electron beam, a positron capture section using new L-band cavities, a newly designed positron-generation target system and a damping ring for a positron beam. This presentation shows a strategy of our injector upgrade. |