Author: Simonov, E.A.
Paper Title Page
MOPPC108 Status of the NSLS-II Booster Control System 362
 
  • S.E. Karnaev, P.B. Cheblakov, A.A. Derbenev, R.A. Kadyrov, S.S. Serednyakov, E.A. Simonov
    BINP SB RAS, Novosibirsk, Russia
  • M.A. Davidsaver, J.H. De Long
    BNL, Upton, Long Island, New York, USA
 
  The booster control system is an integral part of the NSLS-II control system and is developed under EPICS. The booster control system includes six IBM Systems x3250 M3 and four VME3100 controllers connected via Gigabit Ethernet. These computers provide running IOCs for power supplies control, timing, beam diagnostics and interlocks. Also cPCI ADCs located in cPCI crate are used for beam diagnostics. Front-end electronics for vacuum control and interlocks are Allen-Bradley programmable logic controllers and I/O devices. Timing system is based on use of Micro-Research Finland Oy products: EVR 230RF and PMC EVR. Power supplies control use BNL developed set of a Power Supply Interface (PSI) which is located close to power supplies and a Power Supply Controller (PSC) which is connected to a front-end computer via 100 Mbit Ethernet. Each PSI is connected to its PSC via fiber-optic link. High Level Applications developed in Control System Studio and python run in Operator Consoles located in the Control Room. This paper describes the final design and status of the booster control system. The functional block diagrams are presented.  
poster icon Poster MOPPC108 [0.458 MB]  
 
TUPPC021 Monitoring and Archiving of NSLS-II Booster Synchrotron Parameters 587
 
  • A.A. Derbenev, P.B. Cheblakov, R.A. Kadyrov, S.E. Karnaev, S.S. Serednyakov, E.A. Simonov
    BINP SB RAS, Novosibirsk, Russia
  • M.A. Davidsaver
    BNL, Upton, New York, USA
 
  When operating a multicomponent system, it is always necessary to observe the state of a whole installation as well as of its components. Tracking data is essential to perform tuning and troubleshooting, so records of a work process generally have to be kept. As any other machine, the NSLS-II booster should have an implementation of monitoring and archiving schemes as a part of the control system. Because of the booster being a facility with a cyclical operation mode, there were additional challenges when designing and developing monitoring and archiving tools. Thorough analysis of available infrastructure and current approaches to monitoring and archiving was conducted to take into account additional needs that come from booster special characteristics. A software extension for values present in the control system allowed to track the state of booster subsystems and to perform an advanced archiving with multiple warning levels. Time stamping and data collecting strategies were developed as a part of monitoring scheme in order to preserve and recover read-backs and settings as consistent data sets. This paper describes relevant solutions incorporated in the booster control system.  
poster icon Poster TUPPC021 [0.589 MB]  
 
THPPC053 NSLS-II Booster Ramp Handling 1189
 
  • P.B. Cheblakov, A.A. Derbenev, R.A. Kadyrov, S.E. Karnaev, S.S. Serednyakov, E.A. Simonov
    BINP SB RAS, Novosibirsk, Russia
  • T.V. Shaftan, Y. Tian
    BNL, Upton, Long Island, New York, USA
 
  The NSLS-II booster is a full-energy synchrotron with the range from 200 MeV up to 3 GeV. The ramping cycle is 1 second. A set of electronics developed in BNL fro the NSLS-II project was modified for the booster Power Supplies (PSs) control. The set includes Power Supply Interface which is located close to a power supply and a Power Supply Controller (PSC) which is connected to EPICS IOC running in a front-end computer via 100 Mbit Ethernet. A table of 10k setpoints uploaded to the memory of PSC defines a behavior of a PS in the machine cycle. A special software is implemented in IOC to provide a smooth shape of the ramping waveform in the case of the waveform change. A Ramp Manager (RM) high level application is developed in python to provide an easy change, compare, copy the ramping waveforms, and upload them to process variables. The RM provides check of a waveform derivative, manual adjusting of the waveform in graph and text format, and includes all specific features of the booster PSs control. This paper describes software for the booster ramp handling.  
poster icon Poster THPPC053 [0.423 MB]