Author: McGuigan, D.L.
Paper Title Page
MOCOBAB04 The Advanced Radiographic Capability, a Major Upgrade of the Computer Controls for the National Ignition Facility 39
 
  • G.K. Brunton, A.I. Barnes, G.A. Bowers, C.M. Estes, J.M. Fisher, B.T. Fishler, S.M. Glenn, B. Horowitz, L.M. Kegelmeyer, L.J. Lagin, A.P. Ludwigsen, D.T. Maloy, C.D. Marshall, D.G. Mathisen, J.T. Matone, D.L. McGuigan, M. Paul, R.S. Roberts, G.L. Tietbohl, K.C. Wilhelmsen
    LLNL, Livermore, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. #LLNL-ABS-633793
The Advanced Radiographic Capability (ARC) currently under development for the National Ignition Facility (NIF) will provide short (1-50 picoseconds) ultra high power (>1 Petawatt) laser pulses used for a variety of diagnostic purposes on NIF ranging from a high energy x-ray pulse source for backlighter imaging to an experimental platform for fast-ignition. A single NIF Quad (4 beams) is being upgraded to support experimentally driven, autonomous operations using either ARC or existing NIF pulses. Using its own seed oscillator, ARC generates short, wide bandwidth pulses that propagate down the existing NIF beamlines for amplification before being redirected through large aperture gratings that perform chirped pulse compression, generating a series of high-intensity pulses within the target chamber. This significant effort to integrate the ARC adds 40% additional control points to the existing NIF Quad and will be deployed in several phases over the coming year. This talk discusses some new unique ARC software controls used for short pulse operation on NIF and integration techniques being used to expedite deployment of this new diagnostic.
 
slides icon Slides MOCOBAB04 [3.279 MB]  
 
THPPC083 Software Tool Leverages Existing Image Analysis Results to Provide In-Situ Transmission of the NIF Disposable Debris Shields 1270
 
  • V.J. Miller Kamm, A.A.S. Awwal, J.-M.G. Di Nicola, P. Di Nicola, S.N. Dixit, D.L. McGuigan, B.A. Raymond, K.C. Wilhelmsen
    LLNL, Livermore, California, USA
 
  Funding: * This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. #LLNL-ABS-632472
The Disposable Debris-Shield (DDS) Attenuation Tool is software that leverages Automatic Alignment image analysis results and takes advantage of the DDS motorized insertion and removal to compute the in-situ transmission of the 192 NIF DDS. The NIF employs glass DDS to protect the final optics from debris and shrapnel generated by the laser-target interaction. Each DDS transmission must be closely monitored and replaced when its physical characteristics impact laser performance. The tool was developed to calculate the transmission by obtaining the total pixel intensity of acquired images with the debris shield inserted and removed. These total intensities existed in the Automatic Alignment image processing algorithms. The tool uses this data, adding the capability to specify DDS to test, moves the DDS, performs calculations, and saves data to an output file. It operates on all 192 beams of the NIF in parallel, and has shown a discrepancy between laser predictive models and actual. As qualification the transmission of new DDS were tested, with known transmissions supplied by the vendor. This demonstrated the tool capable of measuring in-situ DDS transmission to better than 0.5% rms.
 
poster icon Poster THPPC083 [2.362 MB]  
 
THPPC141 Automatic Alignment Upgrade of Advanced Radiographic Capability for the National Ignition Facility 1384
 
  • K.C. Wilhelmsen, E.S. Bliss, G.K. Brunton, B.T. Fishler, R.R. Lowe-Webb, D.L. McGuigan, R.S. Roberts, M.C. Rushford
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. #LLNL-ABS-632633
For many experiments planned on the National Ignition Facility (NIF), high-energy x-ray backlighters are an important diagnostic. NIF will be deploying this year a new Advanced Radiographic Capability (ARC) for generating these high-energy short-pulses. The precision of the Automatic Alignment (AA) for ARC is an important element in the success of the enhancement. A key aspect of the ARC AA is integration of the new alignment capabilities without disturbing the existing AA operations of NIF. Small pointing tolerances of 5 micron precision to a 10 micron target are required. After main amplification the beams are shortened by up to 1,000x in time in the ARC compressor vessel and aimed at backlighter targets in the NIF target chamber. Alignment Stability and Verification of the compressor gratings is critical to ensuring the ARC pulses meet their experimental specifications.
 
poster icon Poster THPPC141 [4.485 MB]