Keyword: antiproton
Paper Title Other Keywords Page
MOPC14 Beam Position Monitors R&D for keV Ion Beams simulation, BPM, pick-up, multipole 78
 
  • S. Naveed, A.A. Nosych, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S. Naveed, A.A. Nosych, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • A.A. Nosych, L. Søby
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the EU within the DITANET and oPAC projects under contracts 215080 and 289485, HGF and GSI under contract VH-NG-328 and STFC under the Cockcroft Institute core grant ST/G008248/1.
Beams of cooled antiprotons at keV energies shall be provided by the Ultra-low energy Storage Ring (USR) at the Facility for Low energy Antiproton and Ion Research (FLAIR) and the Extra Low ENergy Antiproton ring (ELENA) at CERN's Antiproton Decelerator (AD) facility. Both storage rings put challenging demands on the beam position monitoring system as their capacitive pick-ups should be capable of determining the beam position of beams at low intensities and low velocities, close to the noise level of state-of-the-art electronics. In this contribution we describe the design and anticipated performance of BPMs for low-energy ion beams on the examples of the USR and ELENA orbit measurement systems. We also present the particular challenges encountered in the numerical simulation of pickup response at very low beta values and describe an experimental setup realized at the Cockcroft Institute for BPM callibration. Finally, we provide an outlook on how the implementation of faster algorithms for the simulation of BPM characteristics could potentially help speed up such studies considerably.
 
 
MOPF25 Cryogenic Current Comparator as Low Intensity Beam Current Monitor in the CERN Antiproton Decelerators CERN, shielding, longitudinal, cryogenics 267
 
  • M.F. Fernandes, J. Tan
    CERN, Geneva, Switzerland
  • M.F. Fernandes, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • M.F. Fernandes, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: Work supported by the EU within the oPAC project under contract 289485.
In the low-energy Antiproton Decelerator (AD) and the future Extra Low ENergy Antiproton (ELENA) rings at CERN, an absolute measurement of the beam intensity is essential to monitor any losses during the deceleration and cooling phases. However, existing DC current transformers can hardly reach the μA level, while at the AD and ELENA currents can be as low as 100 nA. A Cryogenic Current Comparator (CCC) based on a superconducting quantum interference device (SQUID) is currently being designed and shall be installed in the AD and ELENA machines. It should meet the following specifications: A current resolution smaller than 10 nA, a dynamic range covering currents between 100 nA and 1 mA, as well as a bandwidth from DC to 1 kHz. Different design options are being considered, including the use of low or high temperature superconductor materials, different CCC shapes and dimensions, different SQUID characteristics, as well as electromagnetic shielding requirements. In this contribution we present first results from a comparative analysis of different monitor options, taking into consideration the external electromagnetic sources at the foreseen device locations.
 
poster icon Poster MOPF25 [1.059 MB]  
 
TUCL3 Gas Electron Multipliers Versus Multi Wire Proportional Chambers CERN, electron, ion, transverse 342
 
  • S.C. Duarte Pinto
    Delft University of Technology, Opto-electronic Section, Delft, The Netherlands
  • J. Spanggaard
    CERN, Geneva, Switzerland
 
  Gas Electron Multiplication technology is finding more and more applications in beam instrumentation and at CERN these detectors have recently been adapted for use in transverse profile measurements at several of our facilities. In the experimental areas of CERN’s Antiproton Decelerator, low energy Gas Electron Multipliers successfully replaced all Multi-Wire Proportional Chambers in 2012 and another detector type has now been developed for high energy applications in the experimental areas of the SPS, totalling a potential of more than a hundred profile detectors to be replaced by GEM detectors of different types. This paper aims to describe the historical evolution of GEM technology by covering the many different applications but with specific focus on its potential to replace Multi-Wire Proportional Chambers for standard transverse profile measurement.  
slides icon Slides TUCL3 [3.275 MB]  
 
TUPF02 Secondary Emission Monitor for keV Ion and Antiproton Beams MCP, electron, CERN, ion 495
 
  • A.G. Sosa, E. Bravin, A. Jeff
    CERN, Geneva, Switzerland
  • J. Harasimowicz, A. Jeff, A.G. Sosa, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J. Harasimowicz, A. Jeff, A.G. Sosa, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: Work supported by the EU within the DITANET and CATHI projects under contracts 215080 and 264330, HGF and GSI under contract VH-NG-328 and STFC under the Cockcroft Institute core grant ST/G008248/1.
Beam profile monitoring of low intensity keV ion and antiproton beams remains a challenging task. A Secondary electron Emission Monitor (SEM) has been designed to measure profiles of beams with intensities below 107 and energies as low as 20 keV. The monitor is based on a two stage microchannel plate (MCP) and a phosphor screen facing a CCD camera. Its modular design allows two different operational setups. In this contribution we present the design of a prototype and discuss results from measurements with protons at INFN-LNF and antiprotons at the AEgIS experiment at CERN*. This is then used for a characterization of the monitor with regard to its possible future use at different facilities.
* Measurements at the AD carried out with the AEgIS collaboration.
 
poster icon Poster TUPF02 [1.934 MB]  
 
TUPF28 A Leading-Edge Hardware Family for Diagnostics Applications and Low-Level RF in CERN’s ELENA Ring CERN, controls, synchrotron, diagnostics 575
 
  • M.E. Angoletta, A. Blas, M. Jaussi, P.M. Leinonen, T.E. Levens, J.C. Molendijk, J. Sanchez-Quesada, J. Simonin
    CERN, Geneva, Switzerland
 
  The CERN Extra Low ENergy Antiproton (ELENA) Ring is a new synchrotron that will be commissioned in 2016 to further decelerate the antiprotons transferred from the CERN’s Antiproton Decelerator (AD). The requirements for the acquisition and treatment of signals for longitudinal diagnostics are very demanding, owing to the revolution frequency swing as well as to the digital signal processing required. The requirements for the Low-Level RF (LLRF) system are very demanding as well, especially in terms of revolution frequency swing, dynamic range and low noise required by the cavity voltage control and digital signal processing to be performed. Both sets of requirements will be satisfied by using a leading-edge hardware family, developed to cover the LLRF needs of all synchrotrons in the Meyrin site; it will be first deployed in 2014 in the CERN’s PSB and in the medical machine MedAustron. This paper gives an overview of the main building blocks of the hardware family and of the associated firmware and IP cores. The performance of some blocks will also be detailed.  
 
WEPC05 The ELENA Beam Diagnostics Systems electron, pick-up, proton, CERN 664
 
  • G. Tranquille
    CERN, Geneva, Switzerland
 
  The Extra Low ENergy Antiproton ring (ELENA) to be built at CERN is aimed at substantially increasing the number of antiprotons to the low energy antiproton physics community. It will be a small machine which will decelerate low intensity beams (<4x107) from 5.3 MeV to 100 keV and will be equipped with an electron cooler to avoid beam losses during the deceleration and to significantly reduce beam phase space at extraction. To measure the beam parameters from the extraction point of the Antiproton Decelerator (AD), through the ELENA ring and all the way to the experiments, many systems will be needed to ensure that the desired beam characteristics are obtained. Particular attention needs to be paid to the performance of the electron cooler which depends on reliable instrumentation in order to efficiently cool the antiprotons. This contribution will present the different monitors that have been proposed to measure the various beam parameters as well as some of the developments going on to further improve the ELENA diagnostics.  
poster icon Poster WEPC05 [1.767 MB]  
 
WEPF28 Longitudinal Beam Diagnostic from a Distributed Electrostatic Pick-Up in CERN’s ELENA Ring longitudinal, CERN, pick-up, diagnostics 883
 
  • M.E. Angoletta, F. Caspers, S. Federmann, J.C. Molendijk, P.J. Pascal Jean, F. Pedersen, J. Sanchez-Quesada, L. Søby, M.A. Timmins
    CERN, Geneva, Switzerland
 
  The CERN Extra Low ENergy Antiproton (ELENA) Ring is a new synchrotron that will be commissioned in 2016 to further decelerate the antiprotons coming from CERN’s Antiproton Decelerator (AD). Required longitudinal diagnostics include the intensity measurement for bunched and debunched beam and the measurement of Dp/p for a debunched beam to assess the electron cooling performance. A novel method for the calculation of these parameters is proposed for ELENA, where signals from the twenty electrostatic pick-ups (PU) used for orbit measurements will be combined to improve the signal-to-noise ratio. This requires that the signals be digitally down-converted, rotated and digitally summed so that the many electrostatic PUs will function as a single, distributed PU from to the processing system viewpoint. This method includes some challenges and will not be used as the baseline longitudinal diagnostics for the initial ELENA operation. This paper gives an overview of the hardware and digital signal processing involved, as well as of the challenges that will have to be faced.