Paper | Title | Page |
---|---|---|
G-01 | A New Unit Access Control for GANIL and SPIRAL 2 | 357 |
|
||
For the GANIL safety revaluation and the new project of accelerator SPIRAL 2, it was decided to replace the existing access control system for radiological controlled areas. These areas are all cyclotron rooms and experimental areas. The existing system is centralized around VME cards. Updating is becoming very problematic. The new UGA (access control unit) will be composed of a pair of PLC to ensure the safety of each room. It will be supplemented by a system UGB (radiological control unit) that will assure the radiological monitoring of the area concerned. This package will forbid access to a room where the radiological conditions are not sure and, conversely, will forbid the beam if there is a possibility of presence of a person. The study of the system is finished and the record of safety in preparation. At GANIL, the ions are accelerated by cyclotrons (C01 or C02, CSS1, CSS2, CIME) and are transported through beamlines towards the rooms of experiments (D1-D6, G1-G4). A first named extension SPIRAL was brought into service in 2000. It makes it possible to produce and post-accelerate, via the cyclotron CIME, the radioactive ion beams obtained by fragmentation of stable ions resulting from CSS2 in a carbon target. The project SPIRAL2 will arrive soon and has the same need in safety. Each room must thus remain confined (without human presence) when potentially dangerous ionizing radiations are present. This protection was identified as an important function for safety and is provided by EIS (Important Equipment for Safety). The EIS of GANIL are referred and described in the RGE (General Rules of Exploitation). It was decided to replace the current systems of security management by four distinct but interconnected systems. |
||
G-02 | Status of the Caviar Detector at LISE-GANIL | 360 |
|
||
Physics that motivated the building of the LISE magnetic spectrometer, main ideas exposed in the scientific council of GANIL June 4th 1981 by M. Brian and M. Fleury, were: atomic physics studies with stripped ions and the study of new isotopes produced by the fragmentation of beams. The LISE line is a doubly achromatic spectrometer (angle and position), with a resolution better than 10-3. Since the first experiment done in 1984, several improvements of the spectrometer were performed: use of a achromatic degrader (1987, used for the first time in the world), building of the achromatic deviation and the Wien Filter (1990), building of a new selection dipole and associated vertical platform (1994), building of the new LISE2000 line (2001), use of the CAVIAR detector (2002), building of the CLIM target (2007). Despite an extreme international competition, the LISE spectrometer remains a world-leader equipment using more than 50 % and up to 90 % of the beam time available at GANIL. This paper presents the status of CAVIAR detector which consists of a MWPC dedicated to in flight particle position at the first dispersive plane of LISE. Since two years, intensive efforts were done with the objective to make available a “plug and play” detector for nuclear physic experiment. We will describe the system from MWPC up to acquisition system. As example few experimental results will be presented. |
||
G-03 | HEBT Lines for the SPIRAL2 Facility | 365 |
|
||
The SPIRAL2 facility at GANIL-Caen is now in its construction phase, with a project group including the participation of many French laboratories (CNRS, CEA) and international partners. The SPIRAL2 facility will be able to produce various accelerated beams at high intensities: 40 MeV Deuterons, 33 MeV Protons with intensity until 5mA and heavy ions with q/A=1/3 up to 14.5MeV/u until 1mA current. We will present the status of the beam dynamics studies recently performed for the high energy beam transport lines of the facility. Various studies were performed on beam-dump concerning beam dynamics, safety and thermo-mechanicals aspects. New experimental areas using stable beams and the cave dedicated to radioactive ion production will be presented according the scientific program. |
||
G-04 | Development of Raster Scanning at NIRS-HIMAC | 370 |
|
||
A new treatment facility project, as an extension of the existing HIMAC facility, has been initiated for the further development of carbon-ion therapy in NIRS. This new treatment facility will be equipped with a 3D irradiation system with pencil beam scanning. The challenge of this project is to realize treatment of a moving target by scanning irradiation. To accomplish practical moving target irradiation and to fix the final design, a prototype of the scanning irradiation system was constructed and installed into existing HIMAC experiment course. The system and the status of the beam test are described. |
||
G-05 | Status of Electron Beam Ion Sources for Particle Therapy | 374 |
|
||
Funding: Work supported by the EFRE fund of the EU and by the Freistaat Sachsen (Project Nos. 12321/2000 and 12184/2000) and Siemens AG. The technical performance of ion sources of the Electron Beam Ion Source (EBIS) type has substantially improved during the last years. This is demonstrated by proof-of-principle experiments which have been done using a room temperature EBIS, a so-called Dresden EBIS-A, which has been in use for several years. A new superconducting EBIS, a so-called Dresden EBIS-SC, has been taken into operation. With the expected higher beam intensities the Dresden EBIS-SC will offer a compact and low-cost solution for applications in particle therapy and will be applicable for synchrotron based solutions (single- or multi-turn injection) as well as other accelerator schemes. It is shown that the introduction of the Dresden EBIS-SC will simplify the injection beam line of medical accelerator facilities. |
||
G-06 | Developement of Treatment Planning Software for Carbon-Ion Scanning at HIMAC | 378 |
|
||
In order to use an intensity-controlled raster scan method at the new treatment facility in HIMAC, we have developed a code system dedicated to the planning of radiotherapy with the scanned 12C beam. Inverse planning techniques are implemented in the software in order to obtain the uniform biological dose distribution within the planned target volume (PTV) as well as reduce the dose delivered to the organ at risks (OARs) delineated on clinical CT images. The scan trajectory is determined so that the path length will be minimized by applying a fast simulated annealing algorithm for scan trajectory optimisation. Furthermore, the extra dose inevitably delivered to the irradiated site during the beam transition time from one spot to the next spot is integrated into the inverse planning process to shorten the treatment time. The code also copes with the planning for intensity modulated ion therapy (IMIT). The reliability of the developed code has been confirmed through the irradiation experiments at the secondary beam line in HIMAC. |
||
G-07 | Research on Measurement of 126Sn by AMS | 381 |
|
||
Funding: Supported by National Natural Science Foundation of China (10576040). A new method was developed for AMS measurement of 126Sn. Major features of the method include the use of SnF2 as target material, the selection of SnF3- molecular ions for extraction form from the target, and the transmission of 126Sn beam current. A sensitivity of (1.92±1.13)×10-10 (126Sn/Sn) has been reached by measuring a blank sample. |
||
G-08 | Accelerator Mass Spectrometry for Long-Lived Heavy Ion 236U at CIAE | 384 |
|
||
Funding: Work supported by the NSAF (National Nature Science Fundation- China Academy of Engineering Physics Fundation) No.10576040. 236U is a long-lived radioactive isotope with a half-life of 2.342(3) ×107 a, which produced principally by thermal neutron capture on 235U. 236U is potentially applied in geological research and nuclear safeguards. Accelerator mass spectrometry (AMS) is presently the most sensitive technique for the measurement of 236U. A method for AMS measurement of long-lived heavy ion 236U was developed at CIAE with the set up the AMS dedicated injector and the newly proposed 208Pb16O2- molecular ions for the simulation of 236U ion transport. A sensitivity of lower than 10-10 has been achieved for isotopic ratio 236U/238U in present work. |