A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tepikian, S.

Paper Title Page
WGA04 Crossing Transition at RHIC 53
 
  • V. Ptitsyn, N.P. Abreu, M. Blaskiewicz, J.M. Brennan, W. Fischer, R.C. Lee, C. Montag, S. Tepikian
    BNL, Upton, Long Island, New York
 
 

Operational experience on crossing RHIC transition as well as observed beam dynamics effects are described. The techniques to provide the successful transition crossing without beam losses and deterioration of the beam quality in both transverse and longitudinal plane are reviewed. Presently the ion beam intensity is limited by the transverse instability happenning at the transition region. It was observed that the threshold of the instability was significantly affected by the presence of the electron cloud. The results of recent studies of the intensity limiting instability are presented.

 

slides icon

Slides

 
WGA28 IBS Suppression Lattice in RHIC: Theory and Experimental Verification 148
 
  • A.V. Fedotov, M. Bai, D. Bruno, P. Cameron, R. Connolly, J. Cupolo, A.J. Della Penna, K.A. Drees, W. Fischer, G. Ganetis, L.T. Hoff, V. Litvinenko, W. Louie, Y. Luo, N. Malitsky, G.J. Marr, A. Marusic, C. Montag, V. Ptitsyn, T. Roser, T. Satogata, S. Tepikian, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York
 
 

Intra-beam scattering (IBS) is the limiting factor of the luminosity lifetime for RHIC operation with heavy ions. Over the last few years the process of IBS was carefully studied in RHIC with dedicated IBS measurements and their comparison with the theoretical models. Recently, in order to suppress transverse IBS growth, a new lattice was designed and implemented in RHIC, which lowered the average arc dispersion by 30%. This lattice became operational during RHIC Run-8. We review the IBS suppression mechanism, IBS measurements before and after the lattice change, and comparisons with predictions.

 

slides icon

Slides