A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Shishlo, A.P.

Paper Title Page
WGA26 High Intensity Effects in the SNS Accumulator Ring 137
 
  • J.A. Holmes, S.M. Cousineau, V.V. Danilov, M.A. Plum, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee
 
 

Operating at 0.5 MW beam power on target, the Spallation Neutron Source (SNS) is already the world's most powerful pulsed neutron source. However, we are only one third of the way to full power. As we ramp toward full power, the control of the beam and beam loss in the ring will be critical. In addition to practical considerations, such as choice of operating point, painting scheme, and rf bunching, it may be necessary to understand and mitigate collective effects due to space charge, impedances, and electron clouds. In dedicated high intensity beam study shifts, we have already observed resistive wall, impedance driven, and electron cloud activity. The analysis and simulation of this data are important ongoing activities at SNS. This talk will discuss the status of this work, as well as other considerations necessary to the successful full power operation of SNS.

 

slides icon

Slides

 
WGB06 Using the Online Single Particle Model for SNS Accelerator Tuning 203
 
  • A.P. Shishlo, A.V. Aleksandrov
    ORNL, Oak Ridge, Tennessee
 
 

The paper describes a usage of the XAL online model for transverse and longitudinal tuning of the SNS linac. Most of the SNS control room physics applications based on the XAL online model which allows synchronizing the model with an accelerator live state and using this model for tuning the machine. Peculiarities of applying of the simplest single particle mode of the model for orbit correction and longitudinal dynamics control of the SNS linac are discussed. The procedure of parameters finding, algorithms, and results are presented.

 

slides icon

Slides

 
WGD13 SNS Beam Commissioning Tools and Experience 382
 
  • A.P. Shishlo, J. Galambos
    ORNL, Oak Ridge, Tennessee
 
 

The paper describes a parallel flow of the Spallation Neutron Source (SNS) linac and ring commissioning and development of commissioning tools. An evolution of the physics control system, its features, problems and solutions are presented. The peculiarities of the SNS project such as a collaboration between six Department of Energy laboratories, an absence of previous experience in large accelerator construction and operation in Oak Ridge National Laboratory, an original upper level of a control system (physics applications) and their effect on SNS commissioning are discussed. SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.

 

slides icon

Slides