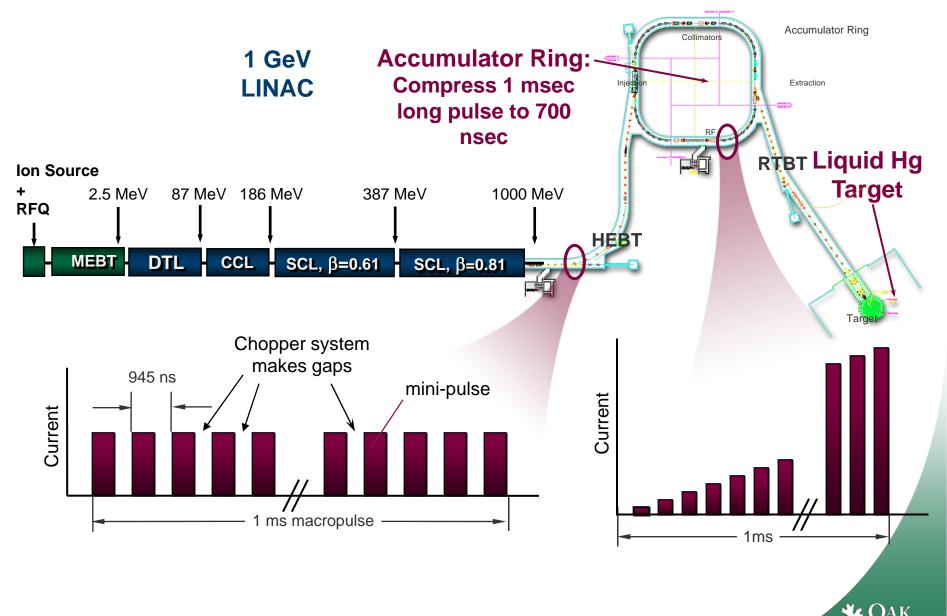
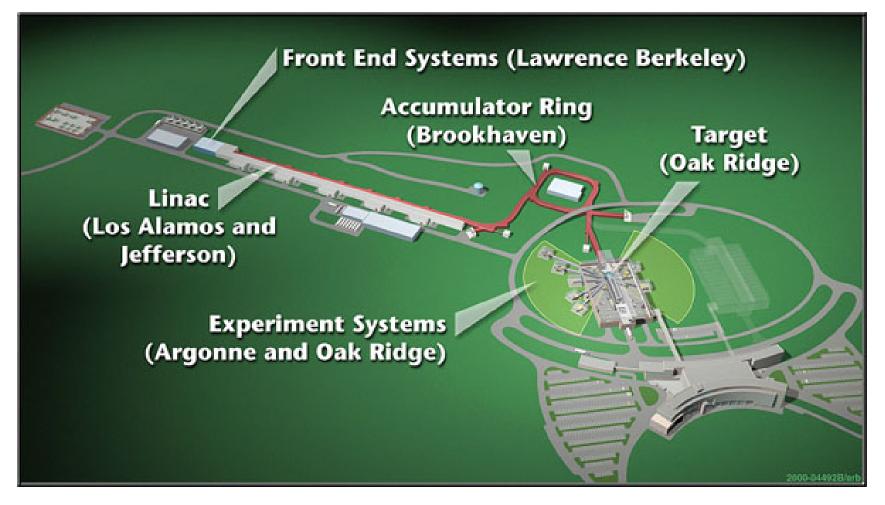
SNS Beam Commissioning Tools and Experience

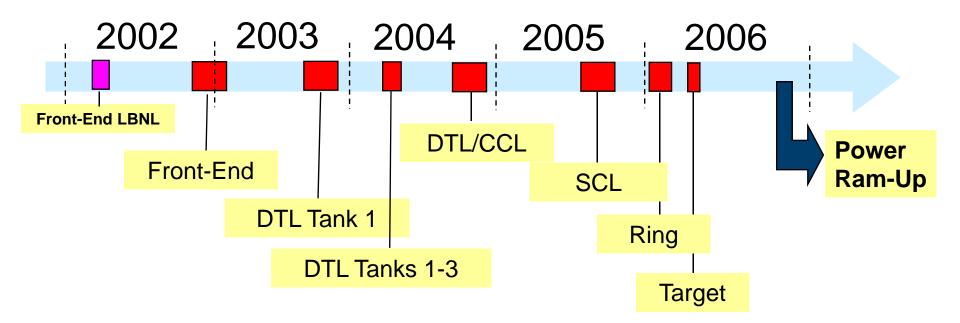
Andrei Shishlo on Behalf of SNS Team HB2008, Nashville, TN August 27, 2008



Outline


- SNS Accelerator Complex
- Commissioning and Tools Development Timeline
- XAL Structure and Most Useful Applications
- Conclusions

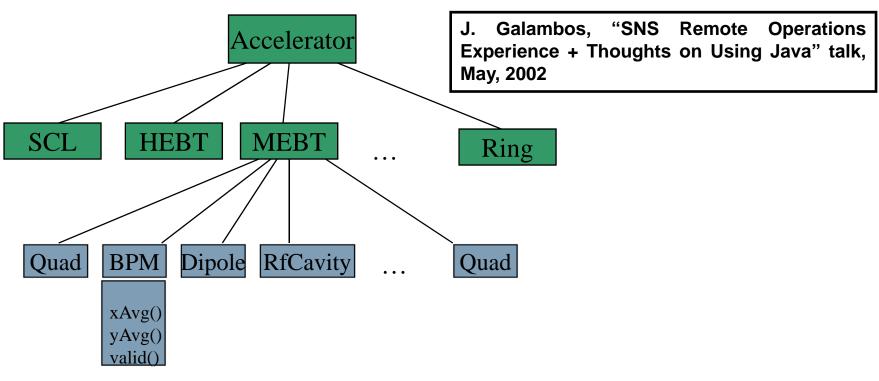
SNS Accelerator Complex


SNS as Collaboration

Accelerator components provided by LBNL, LANL, JLab, ANL and BNL

SNS Beam Commissioning Timeline

- Commissioning was squeezed between Installation activities.
- Try-and-learn iterations approach to software applications development
- Much less time was available for beam commissioning than originally planned.
- Pace of commissioning accelerated at the end


Application Programming Beginning (2000-2001)

- The different technologies were reviewed: FORTRAN applications, MATLAB, SDDS (Self Describing Data Sets), Cdev, Java
- Java
 - Advantages: simple, object oriented, it runs everywhere, GUI, database interaction, client/server application, Java interface to EPICS CA existed, appeal to young physicist/developers
 - Disadvantages (at that time): graphics (contours, error bars, real-time, 3-D, ...), mathematical libraries less mature, most AP members used MatLab
- Application programming requirements was formulated, a list of programs was constructed, manpower needed is 43 FTE (Full Time Equivalent) for 3.5 years of commissioning, accelerator physics, controls, and diagnostics groups are involved
- Two versions of applications: for commissioning and for operations. Commissioning versions are streamlined applications with minimal user interface
- The Application Programming Team was created inside Accelerator Physics Group to start development of Java infrastructure and high level physics applications

MEBT and DTL commissioning: MatLab prototypes of some of applications were written first by AccPhy group members, and then they were rewritten in Java to insure a successful commissioning

XAL – A Java based high level programming infrastructure for physics applications

- Java class structure that provides a hierarchical "device" view of the accelerator to the application programmers
- Setup from database through XML file, EPICS connections hidden Other similar frameworks

Presentation name

- Based on UAL2 (http://www.ual.bnl.gov/)
- Cosylab Abeans / databush (www.cosylab.com)

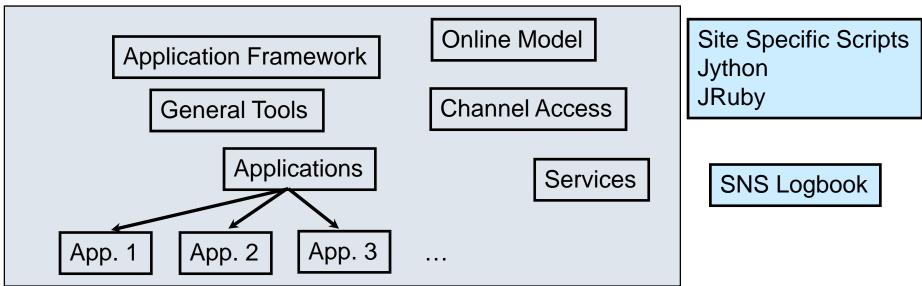
First Test - Remote Testing of Applications

Front End at LBNL

Test control room at ORNL

- The SNS MEBT was commissioned at LBNL April-May 2002.
- 3 slots for testing, 5 hrs total beam time, Tested model comparison, orbit correction + general purpose diagnostic app.
- Application testing before commissioning is a valuable option

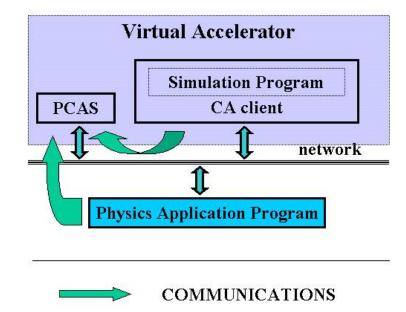
Lessons after First Steps


- Need to familiarize people with application features before commissioning.
- Need GUI interfaced applications for general users.
- Have integrated help capability, common look/feel
- Testing with Virtual Accelerator before commissioning helped

Actions:

- The practice of live lessons for applications become a common practice
- The development of the Application Framework initiated
- Proceed with the Virtual Accelerator development

XAL Structure


- Online Model: simulates charged particle dynamics through specified accelerator sequences; six dimensional phase space propagation; includes space charge
- Application Framework: consistent look and feel; standard, familiar menu items; free automatic behaviors; rapid application development
- □ Channel Access: package abstracts channel access; provides some insulation from API changes to underlying access layer
- Services: run continuously in the background; provide remote communication with user interfaces
- General Tools: solvers, plotting, math etc.

Web page of Tom Pelaia (XAL project leader): http://www.ornl.gov/~t6p/Main/XAL.html

Presentation name

Virtual Accelerator

Simulation Program:

•Trace3D •PARMILA •XAL Online Model "Virtual accelerator" is a model imitating the real machine. In the case of EPICS data exchange It looks like a real machine from the EPICS channel access view, because operates with real process variable (PV) names, and produces a reasonable response generated by the simulation model.

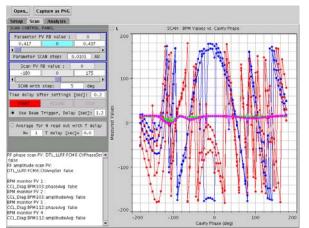
- PCAS Portable Channel Access Server
- Simulation Program Accelerator Model
- CA client Interface to the Simulation Program + channel access client
- Physics Application Program application under development

Now it is an XAL Application. Very useful on early stages and for demonstrations.

Presentation name

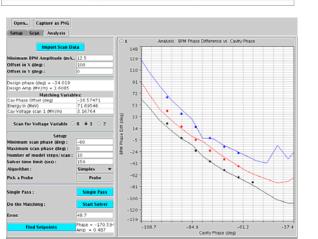
Online Model

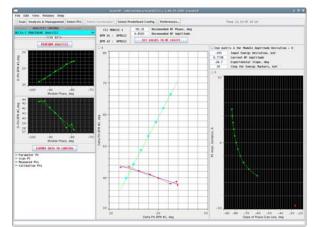
- Package gov.sns.xal.model
- Simulates charged particle dynamics through specified accelerator sequences
- Supports both linear sequences and rings
- Calculates Twiss parameters, energy and orbit distortions
- Six dimensional phase space propagation
- Includes space charge forces for envelop propagation
- Optics input can be from design optics, live machine, PV Logger snapshot or custom values (or combination of these sources)
- Fast enough to use inside optimization tasks in the interactive mode



XAL Solver - Optimization Package

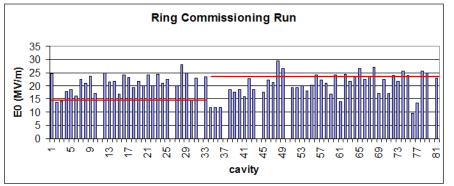
- Optimization using a collection of algorithms
- This is a third generation of optimization packages in XAL
- Package includes:
 - Solver the primary class for setting up and running an optimization
 - Stopper the object that can stop the optimization process (time, iterations, satisfaction level etc.)
 - Problem the class holds user's problem information: objectives, variables, constraints, hints etc.
 - AlgorithmPool a collection of algorithms that can be used in optimization
 - SearchAlgorithm abstract class for a search algorithms. Now the implementations are random search, random shrinking search, gradient search, simplex algorithm
- XAL also has the implementations of linear Least Square Method fitting algorithms and Levenberg-Marquardt method




PASTA – Phase/Amplitude Scan and Tuning **Application**

Application to setup amplitudes and phase of RF cavities

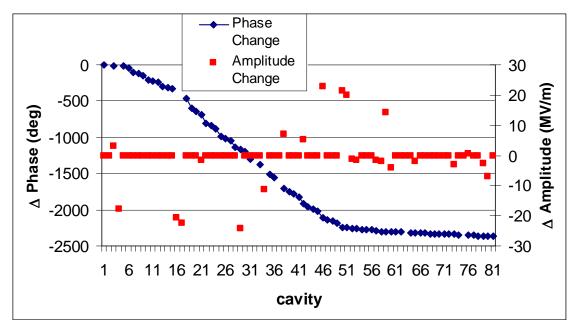
- It scans amplitude and phase of the RF cavity measuring signals from two downstream BPMs
- Solve for incoming beam energy, cavity phase and amplitude by using "phase signature matching".
- It uses the XAL Online Model and XAL Solver for "on-fly" tuning



It replaced the XAL Application based on the "Delta-T" method

To use the "Delta-T you have to find an approximate values for amplitude and phase

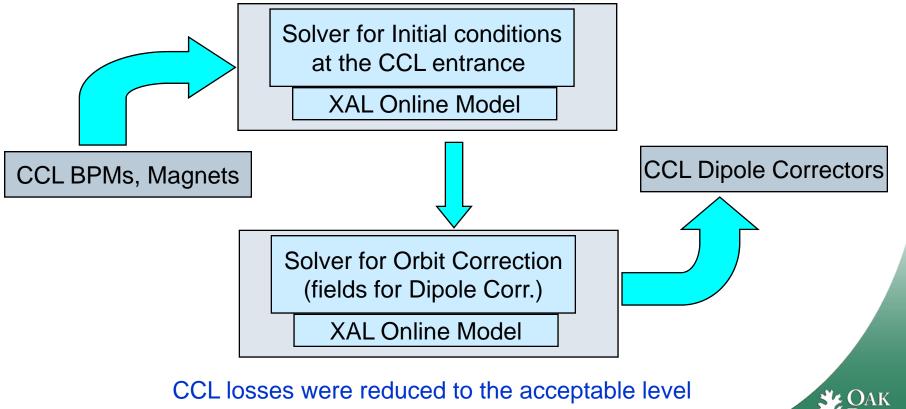
SLACS - Superconducting Linac Automated Cavity Setter (XAL Application)



- As our understanding of the SRF behavior increases, operational settings change, sometimes during a run.
- Need to be flexible Linac output energy is a moving target

Once SCL cavity phase set-points have been established, it is possible rescale downstream cavities using the online model (no measurements needed)

SLACS (Cont.) – SCL Retuning


In the transition from 4.2 K to 2 K, 22 cavity amplitudes changed.

- A Model based method is used to predict the changes in cavity phase settings
- Changed over 2000 degrees at the linac end !
- The measured beam energy was within a few MeV of the prediction
- Used this method many times takes only a few minutes to setup

Model Based Orbit Correction

- CCL section has many quads and few BPMs
- Usual orbit correction with BPMs does not work
- Beam based alignment in quads (40 quads, 1 Hz operations freq.) does work, but it takes about 0.5-1 hour to correct orbit
- The model based orbit correction was developed. It takes about 30 sec and can be done parasitically

PV Logger - XAL Service

- Runs continuously in the background
- Posts sets of data to the database
- Posts periodically or "on demand"
- Each set has an unique ID
- Generalized to allow for custom PV sets
- Provides remote communication with any XAL application
- Has one directly related XAL Application: PV Log Browser
- Has one related XAL tool: PVLogDataSource source of data for the XAL Online Model

SCORE – XAL Application to Save - Compare Restore - Accelerator PVs

elect Systems:	E	Dmp Ll	EBT	CCL	Src	DTL	LDmp	RFQ	SCL	Ring	CF	HEBT				
CCL		Open		7	C	omment		7	RTBT		IC	s	IDn	ıp		MEBT
CF		Туре		-	Settor	oint name			Save Val	SP li√	/e V al	Rear	Iback Name	RE	3 Save Val	RB live Va
DTL		турс	Rina	Mag:P		_B06:I_Se			1588	0.615			ag:PS_DCH_I		51469	0.61411
Dmp						_B08:1_Se			26508	-2.26			ag:PS_DCH_I			-2.26618
IEBT						_B10:B_S			000E0	-0.00			ag:PS_DCH_I			5.186E-6
CS						_B13:B_S			568E-4				ag:PS_DCH_I			
Dmp						_C02:1_Se			80253	-2.80			ag:PS_DCH_			-2.80125
Dmp	-					_C04:1_Se			8513	0.785			ag:PS_DCH_			0.78428
						_C06:1_Se			18396	-1.18			ag:PS_DCH_			-1.18271
elect Subsys:						_C08:1_56			47913	-0.47			ag:PS_DCH_			-0.47996
CU						_C10:B_S			000E0	-0.00			ag:PS_DCH_			2.491E-6
oil						_C13:B_S			42E-3	3.742			ag:PS_DCH_			3.780E-3
IPRF						_D02:1_Se			21448	-2.21			ag:PS_DCH_I			-2.21953
Kick						_D04:1_Se			1663	0.016			ag:PS_DCH_I			0.01691
1PS						_D06:1_Se			2567	0.025			ag:PS_DCH_I			0.02240
lag						_D08:1_Se			85405	-2.85			ag:PS_DCH_I			-2.85415
F						_D10:B_S			000E0	-0.00			ag:PS_DCH_I			1.151E-5
crp						_D13:B_S			49E-3	1.349			ag:PS_DCH_I			1.368E-3
etup						_A01:1_Se			2426	1.724			ag:PS_DCV_/			1.72341
ïm						_A03:1_Se			63032	-1.63			ag:PS_DCV_/			-1.63419
hop						_A05:1_Se			06031	-1.06	· ·		ag:PS_DCV_/			-1.05878
olts						_A07:1_Se			6169	2.861			ag:PS_DCV_/			2.86149
0105						_A09:1_Se).29447				ag:PS_DCV_/			
						A10:B_S			85E-3	8.085			ag:PS_DCV_/			8.077E-3
						A13:B_5			09E-3	2.909			ag:PS_DCV_/			2.911E-3
						B01:LSe			43554	-8.43	· ·		ag:PS_DCV_H			-8.42852
						B03:1_Se			48994	-1.48			ag:PS_DCV_R			-1.49204
						_B05:1_Se			12499	-0.12			ag:PS_DCV_H			-0.12472
								-0.	03562	-0.03	562		ag:PS_DCV_R			-0.03464
PV name filter						B09:1_Se			6032	0.160			ag:PS_DCV_H			0.15679
			Ring	_Mag:P:	S_DCV.	B10:B_Se	et	4.1	03E-4	4.103	E-4	Ring_Ma	ag:PS_DCV_H	3 4.1	103E-4	4.103E-4
				-		B13:BS6			535E-3	-5.53			ag:PS_DCV_R			-5.542E-3
Set Selections						C01:I_Se			1283	1.712			ag:PS_DCV_(1.68549
						_C03:1_Se			63720	-2.63	· ·		ag:PS_DCV_(-2.63988
Select All	I			_			Aachine (-	-			1

Conclusions

What we did right:

- Early staged commissioning approach
- Iterative Approach for Commissioning Tools
- Using physicists (i.e. commissioners) to write applications (Need a core group of "mentor" programmers)
- Educational efforts

In XAL Development:

- Choose Java
- Initialization files created from a database
- Online Model
- Application Framework
- Scripting (Jython/Ruby)

What we did wrong:

- Most applications and some of tools are SNS specific
- Lack of documentation
- Did not implement service daemons to reduce EPICS traffic
- We used commercial plotting package (JClass) in the open source software (XAL)

Backup Slides

XAL - Open Source Environment for Creating Accelerator Physics Applications and Services

Features

- Open Source collaboration with dozens of developers among several sites SNS, SLAC, BNL, JPARC and others
- Pure Java for cross platform development and deployment
- Application Framework for rapidly developing modern applications
- Toolbox of Java packages
- Collection of applications (over four dozen) and services
- EPICS Channel Access support
- Ant based build system independent of IDE

