A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ostroumov, P.N.

Paper Title Page
WGB05 Simulations of High-Intensity Beams Using BG/P Supercomputer at ANL 200
 
  • J. Xu, B. Mustapha, P.N. Ostroumov
    ANL, Argonne, Illinois
  • V.N. Aseev
    Fermilab, Batavia, Illinois
 
 

Large-scale beam dynamics simulations are important in accelerator design and optimization. With the new BG/P supercomputer installed at ANL, tera-scale computing can be easily accessed. In order to make use of this emerging technology to increase the speed and efficiency of accelerator simulations, we have systematized and upgraded our software. In this paper, we will first introduce the new version of the parallel beam dynamic code PTRACK [1] updated to run on BG/P with more than 104 processors. The new PTRACK includes possibility to track ~100,000,000 particles through multiple accelerator seeds in the presence of machine errors. An example of SNS linac simulations will be presented.


[1]. J. Xu, B. Mustapha, V.N. Aseev and P.N. Ostroumov, “Parallelization of a beam dynamics code and ***”, Physics Review Special Topic-Accelerator and Beams 10, 014201, 2007.

 

slides icon

Slides

 
WGB10 Physics Design of Front Ends for Superconducting Ion Linacs 218
 
  • P.N. Ostroumov
    ANL, Argonne, Illinois
  • J.-P. Carneiro
    Fermilab, Batavia, Illinois
 
 

Superconducting (SC) technology is the only option for CW linacs and is also an attractive option for pulsed linacs. SC cavities are routinely used for proton & H-minus beam acceleration above 185 MeV. Successful development of SC cavities covering the lower velocity range (down to 0.03c) is a very strong basis for the application of SC structures in the front ends of high energy linacs. Lattice design and related high-intensity beam physics issues in a ~400 MeV linac that uses SC cavities will be presented in this talk. In particular, axially-symmetric focusing by SC solenoids provides strong control of beam space charge and a compact focusing lattice. As an example, we discuss the SC front end of the H-minus linac for the High Intesity Neutrino Source (HINS) and Project X.

 

slides icon

Slides

 
WGB17 Development of Large Scale Optimization Tools for Beam Tracking Codes 254
 
  • B. Mustapha, P.N. Ostroumov
    ANL, Argonne, Illinois
 
 

Matrix-based beam optics codes such as TRACE-3D are often used for small scale optimizations such as beam matching which involves a limited number of parameters. The limitation of such codes is further amplified for high-intensity and multiple charge state beams as their predictions start to deviate from the more realistic 3D particle tracking codes. For these reasons we have started developing large scale optimization tools for beam tracking codes. The large scale nature comes first from the possibility of optimizing a large number of parameters and second from the minimum number of particles to track especially for space charge dominated beams. The ultimate goal of these developments is not only to optimize the design of an accelerator but also to be able to use a beam dynamics code to operate it once built. A selected set of optimization options will be presented and discussed along with specific applications. We'll also emphasize the need for parallel computing to speed-up the optimization process.

 

slides icon

Slides

 
WGE11 Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans 416
 
  • H. Okuno
    RIKEN/RARF/CC, Saitama
  • T. Fujinawa, N. Fukunishi, A. Goto, Y. Higurashi, E. Ikezawa, O. Kamigaito, M. Kase, T. Nakagawa, J. Ohnishi, Y. Sato, Y. Yano
    RIKEN Nishina Center, Saitama
  • P.N. Ostroumov
    ANL, Argonne, Illinois
 
 

The accelerator complex for RIBF factory in RIKEN consists of the four ring cyclotrons with an injector linac. It can boost the energy of output beams from the linac up to 440 MeV/nucleon for light ions and 350 MeV/nucleon for very heavy ions. The first beam from the accelerator complex was successfully extracted at the end of 2006. An 28GHz SC-ECR ion source will be installed at the front end of the injector linac on a 100kV HV platform to increase the beam intensity of very heavy ions such as uranium. Beam dynamics from the ion source to the exit of the injector were simulated using TRACK. How much space charge forces affect on beam qualities in the successive ring cyclotrons will be discussed.

 

slides icon

Slides

 
CPL05 Closing Plenary Summary of Working Group E: High-Intensity Linacs & Rings: New Facilities and Concepts 493
 
  • P.N. Ostroumov
    ANL, Argonne, Illinois
  • F. Gerigk
    CERN, Geneva
 
 

The International Program Committee of the Workshop and its Chairman have charged us with the following three questions:

  1. Recent trends in high-intensity proton/ion beam facilities?
  2. Critical challenges and key research areas for substantial beam power increases?
  3. Necessary improvements in theory and simulation tools?

 

slides icon

Slides