Paper | Title | Page |
---|---|---|
WGB04 | Simulation of Experiments on Transverse RMS-Emittance Growth Along an Alvarez DTL | 195 |
|
||
Systematic measurements on transverse rms-emittance growth along the Alvarez DTL of the GSI UNILAC were performed. A high intensity argon beam was used to measure rms-growth for different transverse phase advances along the DTL. The transverse tune depression varied from 21% to 43%. For benchmarking of the experimental results four different beam dynamics codes were used: DYNAMION, PARMILA, PARTRAN, and LORASR. This paper is on the results of the experiments, the reconstruction of the initial conditions for the simulations, and on the agreement between simulations and experiments. Additionally, successful suppression of rms-growth by systematic matching is reported. |
||
WGB12 | Prediction of the 4ν=1 Resonance of a High Intensity Linac | 231 |
|
||
The 4ν=1 resonance of a linac is found when the depressed tune is around 90 deg. It is observed that this fourth order resonance is dominating over the better known envelope instability and practically replacing it. Simulation study shows a clear emittance growth by this resonance and its stopband. Experimental measurement of the stopband of this resonance is proposed and conducted in 2008 using the UNILAC at GSI. This study will serve as an excellent benchmarking. SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. |
||
|
||
WGB13 | Investigation of the Beam Dynamics Layout of the FAIR Proton Injector | 235 |
|
||
The FAIR facility at GSI requires a dedicated proton injector for the production of secondary high intensity antiproton beams. This 325 MHz, 70 MeV machine will be the fist linac based on CH cavities operated with Konus beam dynamics. Two different options for the beam dynamics layout are under investigation including loss and error studies. Finally different RFQ output distribution are used to evaluate the injection current into the main linac. |
||
|