A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Shevchenko, O.A.

Paper Title Page
MOOA02 Statistical Theory of the SASE FEL Based on the Two-particle Correlation Function Equation 8
 
  • O.A. Shevchenko, N. Vinokurov
    BINP SB RAS, Novosibirsk
 
 

The startup from noise problem in SASE FELs is usually treated in linear approximation. In this case amplification of initial density fluctuations may be calculated and averaging over initial conditions may be fulfilled explicitly. In general nonlinear case the direct averaging is not applicable. During last years we developed the approach based on the BBGKY hierarchy for the n-particle distribution functions. The interaction of particles in FEL is time-dependent (retarded). Nevertheless, using special time-coordinate transformation, it is possible to make interaction “time-independent” and then to write down the BBGKI equations. Similar to plasma physics, the equations may be truncated after the second one (for the two-particle correlation function). Using this approach we consider several particular cases which illustrate some peculiar features of the SASE FEL operation.

 

slides icon

Slides

 
TUOD01 Novosibirsk Free Electron Laser Facility: Two-orbit ERL Operation with Two FELs 447
 
  • N. Vinokurov, E.N. Dementyev, B.A. Dovzhenko, Ya.V. Getmanov, B.A. Knyazev, E.I. Kolobanov, V.V. Kubarev, G.N. Kulipanov, L.E. Medvedev, S.V. Miginsky, L.A. Mironenko, V. Ovchar, B.Z. Persov, V.M. Popik, T.V. Salikova, M.A. Scheglov, S.S. Serednyakov, O.A. Shevchenko, A.N. Skrinsky, V.G. Tcheskidov, Y.F. Tokarev, P. Vobly, N.S. Zaigraeva
    BINP SB RAS, Novosibirsk
  • A.N. Matveenko
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

The first stage of Novosibirsk high power free electron laser (FEL) provides electromagnetic radiation in the wavelength range 120 - 230 micron. The maximum average power is 500 W. Five user stations are in operation now. Novosibirsk ERL has rather complicated magnetic system. One orbit for 11-MeV energy with terahertz FEL lies in vertical plane. Other four orbits lie in the horizontal plane. The beam is directed to these orbits by switching on of two round magnets. In this case electrons pass four times through accelerating RF cavities, obtaining 40-MeV energy. Then, (at fourth orbit) the beam is used in FEL, and then is decelerated four times. At the second orbit (20 MeV) we have bypass with third FEL. Last year two of four horizontal orbits are assembled and commissioned. The electron beam was accelerated twice and then decelerated down to low injection energy. First multi-orbit ERL operation was demonstrated successfully. In 2009 the first lasing at the second FEL, installed on the bypass of the second track, was achieved. The wavelength tunability range lays near 50 micron. Energy recovery of a high energy spread used electron beam was optimized.

 

slides icon

Slides