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Abstract 
The startup from noise problem in SASE FELs is 

usually treated in linear approximation. In this case 
amplification of initial density fluctuations may be 
calculated, and averaging over initial conditions may be 
fulfilled explicitly. In general nonlinear case the direct 
averaging is not applicable. During last years we 
developed the approach based on the BBGKY hierarchy 
for the n-particle distribution functions. The interaction of 
particles in FEL is retarded. Nevertheless, using special 
time-coordinate transformation, it is possible to eliminate 
the interaction lag and then to write down the BBGKY 
equations. Similar to plasma physics, the equations may 
be truncated after the second one (for the two-particle 
correlation function). Using this approach we consider 
several particular cases which illustrate some peculiar 
features of the SASE FEL operation. 

INTRODUCTION 
The short wavelength FELs are considered now as the 

most perspective candidates for high-brightness x-ray 
sources. Recent achievements in the FEL experimental 
technique demonstrated the capability of FELs to produce 
high peak brightness radiation with the wavelength down 
to 0.1 nm.  

The short wavelength FELs usually operate in the high-
gain regime and amplify initial fluctuations of electron 
beam current. Therefore the radiation of such FELs has 
stochastic nature. Its parameters may fluctuate 
significantly from shot to shot and within one pulse. To 
determine these parameters in a single shot one has to 
solve particle motion equations together with Maxwell 
equations.  

As the number of particles is very large this calculation 
can not be fulfilled directly. There are two essentially 
different approaches to this problem which are used in 
contemporary simulation codes [1, 2]. One of them is 
based on the Vlasov equation for the smoothed particle 
distribution function in a 6-D phase space which is solved 
together with radiation field equation. The other one uses 
macroparticles to represent distribution of electrons in a 
beam.  

For the start-up from noise simulations both approaches 
require special treatment of the initial conditions. In 
particular, macroparticle based codes have to use some 
artificial particle arrangement to suppress enhanced 
spontaneous emission [3]. There are no doubts that this 
method works correctly at linear stage but its applicability 
to the saturation stage is not so evident. In the Vlasov 
equation based codes, on the contrary, smoothing of the 

distribution function leads to artificial damping of the 
initial shot noise. 

Sometimes it is not necessary to know peak radiation 
parameters obtained in one shot. For some experiments 
one just needs to know the radiation parameters averaged 
over many shots. Moreover for long enough electron 
bunches averaging over the bunch length may be 
performed in a single shot. The averaged radiation 
parameters can be also used to check the single shot 
simulation codes. To do this one needs to average 
simulation results obtained from these codes for different 
initial conditions [4].  

So it is very important to develop an adequate 
analytical approach and numerical algorithm for the 
treatment of the averaged beam and radiation parameters. 
This problem can be solved by the standard methods of 
statistical mechanics. It was previously considered by 
many authors but usually the solution was limited to the 
linear case when one can introduce the Green function 
and the averaging becomes straightforward. 

The regular nonlinear approach to this problem was 
proposed in [5]. It is based on the BBGKY set of 
equations which is truncated to two equations for single-
particle distribution function and two-particle correlation 
function. In this paper we give a brief overview of this 
approach and demonstrate its application to some 
particular cases. 

OVERVIEW OF THE CORRELATION 
FUNCTION THEORY 

Particle Motion Equations 
To obtain the particle motion equations we make some 

widely-used approximations which include averaging 
over undulator period, paraxial solution for the radiation 
field equation and resonant character of the particle and 
field interaction. As the particle motion is paraxial, the 
trajectories are not perturbed significantly by radiation 
field. Then the motion equations for the particles with 
longitudinal coordinates ( )kz , relative energy deviation 

( )kΔ  and initial coordinates ( )kX  in 4-D transverse phase 
space may be written as 
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where //γ  is relativistic factor for average longitudinal 

velocity of the reference particle, ( ) ( )( )kk Xz ,βΔ  is the 
velocity shift due to betatron oscillations, Φ  is the force 
acting on k-th particle from l-th particle, velocity of light 
is equal to unity. We assume that undulator field is zero 
for negative z  and ( ) ( )( ) 0, =Φ lk zz  if ( ) ( )lk zz <  or 

( ) 0<lz . The explicit formula for Φ can be derived from 
the solution of the radiation field equation [5]. 

It should be taken into account that (1) is not actually a 
system of ordinary differential equations (ODE) because 
its right-hand side contains particle coordinates ( )lz  at 
retarded moments of time ( ) tt l <′ . However, one can find 
its unique solution, if one specifies for each particle its 
entrance time into undulator. Though the solution 
procedure may be not so straightforward in general case, 
when one has to take into account the dependence of 
retarded time on particle transverse coordinate. 
Fortunately in this particular case the system (1) can be 
rewritten as the system of ODE if one introduces a new 
variable zt −=ξ . This variable can be treated simply as 
a new parameterization of the particle trajectories in 
space-time (Fig. 1). It also has obvious physical meaning. 
If we place the clocks along axis z  and launch them 
using the light pulse propagating forward, then value of 
ξ  at given point z  will be equal to the “local time”, 
which is the read-out of clock at this point. There is direct 
analogy between this new variable and the zone time. One 
can say that the clocks at each time zone are synchronized 
by the sunrise. 

It follows from the relation zt Δ−Δ=Δξ  (see Fig. 1), 

that for arbitrary function ( ) ( )zzftzf += ξ,,  the 
derivative along the particle world line is written as 
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Taking into account (2) one can write down the final 
system of motion equations: 
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where ξγθ 2
//2= . Further we shell use ww k12 =πλ  as 

the unit length for the longitudinal coordinates, where wλ  

is the undulator period. 
Initial conditions for the system (3) have to be specified 

at const=ξ . They can be reconstructed from the particle 

entrance time if we assume that particles move freely 
before they enter the undulator. 

 

 
Figure 1: New parameterization of the particle world lines 
in space-time. 

 

The Microscopic Density Distribution  
The system (3) can not be solved directly as the number 

of particles is very large. But it is not required if we are 
interested in the results averaged over initial conditions. 
To make this averaging it is convenient to introduce 
microscopic density distribution function (Klimontovich 
function) in the single-particle phase plane (z, Δ) 

( ) ( ) ( )( ) ( )( )( ) ( )( )∑ −Δ−Δ−=ΔΝ
k

kkk XXzzXz δθδθδθ;,,

 (4) 

Variable X here is a 4-D vector of initial transverse 
coordinates and angles. It worth noting, that X is not a 
dynamic variable, but just a parameter (four integrals of 
motion), which marks different trajectories. Nevertheless, 
the 6-D space (z, Δ, X) will be referred to as the phase 
space. The microscopic phase space density obeys 
continuity equation, which is equivalent to the initial 
system of motion equations (3) 
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where ( ) {} iiiiii dXddzidXzi Δ=Δ= ),,,( .  

( )θ;,, Xz ΔΝ  has slightly unusual physical meaning. It 

is a density distribution at hyperplane const=θ . To 
describe particle dynamics in FEL one usually uses z  as 

independent variable and 
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longitudinal coordinate. Here wkk 2
//0 2γ≈  is the resonant 
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wave number and 0zV  is longitudinal velocity of the 

reference particle. There is a simple relation between 
microscopic density distributions for these two different 
sets of variables 
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One can also easily write down a relation between 
( )θ;,, Xz ΔΝ  and any conventional quantity like beam 

current or bunching factor  
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zt
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( ) ( ) ( ) ( ) θθ θ dXddeXzXzv
N

zb zi ΔΔΝΔ= ∫
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where N is the total number of particles. 

Averaging over Initial Conditions 
To make averaging we need to introduce distribution 

function ( )Nf of particle coordinates in the 6N-D phase 
space where N is the total number of particles. Integrating 
it over N – s particle coordinates we can also introduce s – 
particle distribution functions ( )sf . For the average 
values of the microscopic density distribution and its 
products we get the following expressions  
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The two particle correlation function G is defined by 
the following expression 

( )( ) ( ) ( ) ( )θθθθ ,2,1,2,1,2,12 GFFf +=    

Averaging of (5) leads to the BBGKY chain of 
equations for the s – particle distribution functions. In the 
FEL case number of interacting particles (number of 
particles at cooperation length, which may be compared 
with the well known parameter of plasma theory – the 
number of plasma particles in the Debye sphere) is large 
and interaction has collective nature. Therefore two-
particle interaction is comparatively weak. It means, that 
s-particle distribution functions are almost factorized (low 
correlations between particles). We also assume that 
initially particles are not correlated (N-particle 
distribution function is equal to the product of N equal 
single-particle distribution functions), so that second and 
higher order correlation functions are equal to zero 

0...)0,3,2,1()0,2,1( === HG    

With these assumptions we can truncate the BBGKY 
chain to two equations for the single-particle distribution 
and two-particle correlation function 
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Here we have taken into account oscillating nature of the 
interaction force Φ . It worth noting, that the second 
equation contains inhomogeneous part which corresponds 
to the shot noise. The left side of the first equation is 
Vlasov equation, and the right one is so-called “collision 
term”. Eq. (8) is the equivalent of Lenard-Balescu 
equation in plasma physics. 

Two Time Correlation Function 
To determine some quantities, which can be observed 

in the experiment it is not sufficient to know single-time 
correlation function. For example the spectrum of the 
beam current at given point z in undulator can be found 
from the two-time current correlation function which is 
proportional to ( ) ( )21 ,2,1 θθ ΝΝ , see (7). For this 

purpose one needs to know two-time correlation function 
which obeys the following equation 
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This equation has to be solved with initial condition 
( ) ( )1212 ,2,1|,2;,1

21
θθθ θθ GG == . It means that it can not be 

solved without solution of the system (8). 
It worth noting, that there are some quantities which 

can be determined directly from the single-time 
correlation function, e.g. radiation peak power or angular 
intensity distribution.  

Coasting Beam and Homogeneous Undulator 
Usually electron bunch length in the short wavelength 

FELs is much larger than the cooperation length. 
Therefore one can use the coasting beam approximation 
which allows to reduce initial system (8) to the system of 
static equations without any time dependence 
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In this case one usually uses different normalization of 
the distribution function 

( ) 1,,
2

1
)1( lim =ΔΔ= ∫ ∫∫
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L
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dzdXdXzF
L

F   

With this normalization the value of N in eq. (9)-(10) is 
equal to the number of particles per unit length 

( )0ekIN =  where I is the average beam current. 

Two-time correlation function in the stationary case 
depends on the time difference only 

( ) ( )212212 ,2,1,2;,1 θθθθ −= GG    

We shell also restrict our consideration of the 
correlation function theory to the homogeneous undulator 
and matched transverse focusing case when longitudinal 
velocity ( )Xzvz ,,Δ  does not depend on z explicitly (the 
velocity modulation due to betatron oscillations will be 
neglected). 

Linear Theory 
At linear stage one can neglect evolution of the 

distribution function F described by (9) and make Laplace 
transform of (10) over 1z  and 2z  which leads to the 
following integral equation 
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where ( ) ),,( iii Xsi Δ=  and 
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SOLUTIONS FOR SPECIAL CASES 

Cold Beam 
In the simplest case of the cold beam the distribution 

function at eq. (11) has the following form 

( ) ( ) ( )ΔδΔ XFXF
~
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One can define the moments of correlation function by 
the following expression 
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Then one can get from the eq. (11) the closed system of 

equations for 00g and 10g . For the wide beam mng  

depends only on 12 rr − . Making Fourier transform over 

this variable one can get explicit solution for 00g  
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( )⊥Φ ks ,1  is Laplace and Fourier transform of ( )2,1Φ  

over 21 zz −  and 12 rr − , and χN  is the particle density. 
The fluctuation spectrum at given point z can be 

determined as 
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where 21 sss +=  and ( ) 221 ssikz −= . To calculate the 
integral (14) one needs to solve dispersion equation 
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It can be shown that this equation is equivalent to the set 
of two equations 
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Each of them is the dispersion equation for the linearized 
single-particle Vlasov equation. They describe a 
perturbation with frequency ω. Elimination of ω will 
return us to the dispersion equation D = 0. Taking into 
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account the explicit expression for ( )⊥Φ ks ,1  one gets the 
following set of equations 
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where 1<<ρ  is the Pierce parameter and 
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Eq. (15) can be solved by perturbation method. The 
solution with maximum ( )sRe  has the flowing form 
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where 1~ −== zkνρν . One can see from (16) that the 

gain length 
w

G
k

L
ρ32

1=  and the characteristic 

amplification bandwidth at one gain length ρσ 23=v  

obtained in this theory are the same as in the conventional 
1-D theory of SASE FEL [6]. 

Evolution of the transversal coherence is described by 

inverse Fourier transform of ( )⊥kkzg z ,,  
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Here z~ is normalized to GL and r~ is normalized to 

0λGL , ( )xJ0  is the Bessel function. Behaviour of (16) 

as a function of z~ and r~ for 0~ =ν  is illustrated by Fig. 
2. 
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Figure 2: Evolution of transversal coherence in the case of 
wide beam. 

 

Numerical Solution for the 1-D case and 
Comparison with Quasilinear Approach  

There is no analytical solution of (9)-(10) for the 
saturation stage but one can relatively easily obtain the 
numerical solution of these equations for the 1-D case.  
Though it is not very interesting from the practical point 
of view one can use the results obtained from these 
simulations to check the validity of the results obtained 
from single shot simulation codes. In this section we 
present the results of such comparison of the correlation 
function approach with the simulation code based on the 
quasilinear equations [7]. 

In the quasilinear approach one solves the set of 
equations for the smoothed density distribution in single-
particle phase space with conventional coordinates ( )Δ,τ  
and z  as independent variable. We assume this 
distribution to be periodic in τ  

( ) ( ) ( ) ( )
∑

+Δ+Δ=Δ
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τν
ντ 1

0 ,,, iezfFzf  (17) 

where nHνν =  and νπ HT 2=  is the period in 

τ which has to be chosen larger then several tens of 
cooperation lengths. In the quasilinear approximation one 
has the following set of equations 
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In the second equation terms, proportional to the radiation 
field Av and components of distribution function, which 
oscillate at double frequency, are neglected. This 
simplification is called “quasilinear approximation”. Its 
physical meaning is simple. There are two mechanisms, 
which stop the exponential signal growth. One 
corresponds to almost full beam bunching. It works at low 
initial velocity spread, for example, in travelling wave 
tubes. For short-wavelength FELs the longitudinal 
velocity spread is relatively high, so, before the higher 
harmonics of density modulation may appear, the energy 
spread increases, increasing the gain length. This second 
mechanism is described by the quasilinear equations. To 
describe SASE, these equations have to be solved with 
the shot noise initial load. The initial distribution function 
for this case can be obtained the following way. One has 
to start with the initial microscopic density distribution 
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where TN is the number of particles per one period. 
Making Fourier transform of (18) one obtains the 
following expression for ( )Δν0f  
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where ( ) kk τνϕ += 1 are random phases with uniform 

distribution. In simulation delta functions have to be 
replaced by step functions  
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where ( ) 1=ΔΠ  if ( )ΔΔ−∈Δ HH 5.0,5.0 and ( ) 0=ΔΠ  

otherwise, ( ) ΔΔ Δ≈ HFNN mTm 0  is number of particles in 

the m-th energy interval. Taking into account that for the 
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one can get the final expression for ( )mf Δν0  
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where νH  is the step in ν , 2,1I are random numbers 

distributed uniformly in the interval ( )1,0 . 
To make comparison of two approaches one needs to 

find correspondence between them. Taking into account 
(6) and (17) one can write down the following relation 
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where angle brackets mean averaging over initial 
conditions. From this relation one can determine two 
quantities which can be compared for two different 
approaches 
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We made the comparison for the following set of 
parameters: Pierce parameter 4105 −⋅=ρ , energy spread 

ρσ 5.0=Δ , number of particles per one wavelength 
410

0
=λN . Description of the numerical algorithm can be 

found at [8]. Averaging in the quasilinear simulation was 
done over 1000 runs. The spectrum distribution for single 
run is shown at Fig. 3. The comparison results are 
presented at Fig. 4-6. 
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Figure 3: Beam current spectra obtained in quasilinear 
simulations. Step function – single run, smooth curve – 
averaged over 1000 runs. 
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Figure 4: Dependence of the current fluctuation power on 
the longitudinal coordinate in undulator. Thick red curve 
– correlation function approach, thin blue curve – 

quasilinear approach, gL  - the gain length at the linear 

stage. 
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Figure 5: Dependence of the r.m.s. spectral bandwidth on 
the longitudinal coordinate in undulator. Thick red curve 
– correlation function approach, thin blue curve – 
quasilinear approach. 
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CONCLUSION 
In this paper we reviewed the correlation function 

approach to the theory of SASE FELs. New analytical 
and numerical results were described. Cross-checking 
with the quasilinear theory approach gives excellent 
mutual agreement. The correlation function approach is 
significant for both right understanding of noise in FEL 
and obtaining of reliable calculation results. At this point 
only simplified model problems were solved this way, 
but, the codes for real FEL calculations also looks 
feasible. 
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Figure 6: The spectral and energy distributions at different 
longitudinal positions. Solid curve – correlation function 
simulations, separate dots – quasilinear simulations. 
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