A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Clark, D.

Paper Title Page
MOPC71 The ALPHA-X Beam Line: Toward a Compact FEL 172
 
  • M.P. Anania, D. Clark, R.C. Issac, D.A. Jaroszynski, A. J. W. Reitsma, G.H. Welsh, S.M. Wiggins
    USTRAT/SUPA, Glasgow
  • J.A. Clarke, M.W. Poole, B.J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • M.J. de Loos, S.B. van der Geer
    Pulsar Physics, Eindhoven
 
 

Recent progress in developing laser-plasma accelerators is raising the possibility of a compact coherent radiation source that could be housed in a medium sized university department. Beam properties from laser-plasma accelerators have been traditionally considered as not being of sufficient quality to produce amplification. Our work shows that this is not the case. Here we present a study of the beam characteristics of a laser-plasma accelerator. We also highlight the latest results on the ALPHA-X compact FEL. We show how the beam properties of the ALPHA-X beam line have been optimized in order to drive a FEL. We discuss the implementation of a focussing system consisting of a triplet of permanent magnet quadrupoles and a triplet of electromagnetic quadrupoles. The design of these devices has been carried out using the GPT (General Particle Tracer "*") code, which considers space charge effects and allows a realistic estimate of electron beam properties along the beam line. The latest measurements of energy spread and emittance will be presented. Currently we have measured energy spreads less than 0.7% and, using a pepper pot, put an upper limit on the emittance of 5 pi mm mrad.


"*" S.B. van der Geer and M.J. de Loos, “General Particle Tracer code: design, implementation and application” (2001);