MOCOBK —  New Development & Status   (23-Aug-10   11:00—12:30)
Chair: C.M. Lyneis, LBNL, Berkeley, California, USA
Paper Title Page
MOCOBK01 ECR Ion Sources for the Facility for Rare Isotope Beams (FRIB) Project at Michigan State University 14
 
  • G. Machicoane, M. Doleans, O.K. Kester, T. Ropponen, L.T. Sun, X. Wu
    NSCL, East Lansing, Michigan, USA
  • D. Leitner
    LBNL, Berkeley, California, USA
  • E. Pozdeyev, E. Tanke
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by US DOE Cooperative Agreement DE-SC0000661
Once op­er­a­tional, the Fa­cil­i­ty for Rare Iso­tope Beams (FRIB) will open the pos­si­bil­i­ty to gain key un­der­stand­ing in nu­cle­ar sci­ence and in par­tic­u­lar re­gard­ing the prop­er­ties of nu­clei far from the val­ley of sta­bil­i­ty or the nu­cle­ar pro­cess­es in the uni­verse. In ad­di­tion it will also allow ex­per­i­menters to test fun­da­men­tal sym­me­tries. The pro­duc­tion of rare iso­topes with FRIB will be achieved, using a heavy ion driv­er linac that will ac­cel­er­ate a sta­ble iso­tope beam to 200 MeV/u and de­liv­er it on a frag­men­ta­tion tar­get. FRIB aims to reach a pri­ma­ry beam power of 400 kW for light to heavy el­e­ments up to Ura­ni­um. To meet the in­ten­si­ty re­quire­ment two high per­for­mance ECR ion sources op­er­at­ing at 28 GHz will be used to pro­duce high in­ten­si­ty of medi­um to high charge state ion beams. Plans re­gard­ing ini­tial beam pro­duc­tion with the ECR ion sources and beam trans­port through the front end will be dis­cussed.
 
slides icon Slides MOCOBK01 [3.259 MB]  
 
MOCOBK02 Present Status of FLNR (JINR) ECR Ion Sources 17
 
  • S.L. Bogomolov, V.B. Bekhterev, V.M. Drobin, A. Efremov, B. Gikal, G.G. Gulbekyan, Yu.K. Kostyukhov, N. Lebedev, V.N. Loginov, V.V. Seleznev, Yu. Yazvitsky
    JINR, Dubna, Moscow Region, Russia
 
  Six ECR ion sources have been op­er­at­ed in the Flerov Lab­o­ra­to­ry of Nu­cle­ar Re­ac­tions (JINR). Two 14 GHz ECR ion sources (ECR4M and DE­CRIS-2) sup­ply var­i­ous ion species for the U400 and U400M cy­clotrons cor­re­spond­ing­ly for ex­per­i­ments on the syn­the­sis of heavy and ex­ot­ic nu­clei using ion beams of sta­ble and ra­dioac­tive iso­topes. The 18 GHz DE­CRIS-SC ion source with su­per­con­duct­ing mag­net sys­tem pro­duce ions from Ar up to W for solid state physics ex­per­i­ments and poly­mer mem­brane fab­ri­ca­tion at the CI-100 cy­clotron. The third 14 GHz ion source DE­CRIS-4 with “flat” min­i­mum of the axial mag­net­ic field is used as a stand alone ma­chine for test ex­per­i­ments and also for ex­per­i­ments on ion mod­i­fi­ca­tion of ma­te­ri­als. The other two com­pact ECR ion sources with all per­ma­nent mag­net con­fig­u­ra­tion have been de­vel­oped for the pro­duc­tion of sin­gle charged ions and are used at the DRIBs in­stal­la­tion and at the MASHA mass-spec­trom­e­ter. In this paper, pre­sent sta­tus of the ion sources, re­cent de­vel­op­ments and plans for mod­ern­iza­tion are re­port­ed. Also the re­sults of the pre­lim­i­nary test of the DE­CRIS-SC2 ECR source will be pre­sent­ed.  
slides icon Slides MOCOBK02 [11.671 MB]  
 
MOCOBK03 Status of Ion Sources at HIMAC 20
 
  • A. Kitagawa, M. Muramatsu, Y. Sakamoto
    NIRS, Chiba-shi, Japan
  • S. Biri
    ATOMKI, Debrecen, Hungary
  • A.G. Drentje
    KVI, Groningen, The Netherlands
  • T.F. Fujita
    National Institute of Radiological Sciences, Chiba, Japan
  • T. Sakuma, N. Sasaki, T. Sasano, W. Takasugi
    AEC, Chiba, Japan
 
  Since 1994, heavy-ion ra­dio­ther­a­py using car­bon ions is suc­cess­ful­ly car­ried out with the Heavy Ion Med­i­cal Ac­cel­er­a­tor in Chiba (HIMAC) at the Na­tion­al In­sti­tute of Ra­di­o­log­i­cal Sci­ences (NIRS). Over 5000 can­cer pa­tients have al­ready been treat­ed with 140-400 MeV/u car­bon beams. These clin­i­cal re­sults have clear­ly ver­i­fied the ad­van­tages of car­bon ion. The ion source needs to re­al­ize a sta­ble beam with the same con­di­tions for daily op­er­a­tion. Main­te­nance is re­strict­ed to once per year. How­ev­er, the de­po­si­tion of car­bon on the wall of the plas­ma cham­ber is nor­mal­ly un­avoid­able. This caus­es an ‘an­ti-wall-coat­ing ef­fect’, i.e. a de­creas­ing of the beam (typ­i­cal­ly 50 % after a few months of op­er­a­tion), es­pe­cial­ly for the high­er charge-state ions due to the sur­face ma­te­ri­al of the wall. The ion source has - even in this bad con­di­tion – still to pro­duce a suf­fi­cient­ly in­tense and sta­ble beam. We sum­ma­rize our ex­pe­ri­ence dur­ing 16 years of op­er­a­tion and show the scope for fur­ther de­vel­op­ments. HIMAC is ded­i­cat­ed to ra­dio­ther­a­py, but it has as a sec­ond es­sen­tial task to op­er­ate as a fa­cil­i­ty for physi­cist users. In that scope it ac­cel­er­ates many ion species for basic ex­per­i­ments. In order to serve all HIMAC users at best, the ex­ten­sion of the range of ion species is an im­por­tant sub­ject in ion source de­vel­op­ment. For ex­am­ple, in order to in­crease the ECRIS-beam in­ten­si­ty for heav­ier ions, mi­crowave is ap­plied at dif­fer­ent fre­quen­cies by a trav­el­ing wave tube am­pli­fi­er and….?  
slides icon Slides MOCOBK03 [2.780 MB]  
 
MOCOBK04 Recent Activities at the ORNL Multicharged Ion Research Facility (MIRF) 23
 
  • F.W. Meyer, M.E. Bannister, S. Deng, I.N. Draganić, J.W. Hale, P.R. Harris, C.C. Havener, H.F. Krause, C.R. Vane
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: Sponsored by the Office of Fusion Energy Sciences and the Office of Basic Energy Sciences of the U.S. DOE under contract No. DE-AC05-00OR22725 with UT_Battelle.
We re­port on re­cent up­grades of the ORNL Mul­ti­charged Ion Re­search Fa­cil­i­ty, and our ac­tiv­i­ties in the area of ECR ion source di­ag­nos­tic mea­sure­ments. The up­grades in­clude in­stal­la­tion of a new all per­ma­nent mag­net ECR ion source [1] on a high volt­age plat­form that in­creas­es our high en­er­gy beam pro­duc­tion ca­pa­bil­i­ty to 250keV/q, and in­stal­la­tion of a float­ing beam­line fed by a 10 GHz CAPRICE ECR ion source for pro­duc­ing de­cel­er­at­ed ion beams to en­er­gies as low as a few eV/q range. The pri­ma­ry ap­pli­ca­tion of all the pro­duced ion beams is to study fun­da­men­tal col­li­sion­al in­ter­ac­tions [2] of mul­ti­charged ions with elec­trons, atoms, and sur­faces. We also sum­ma­rize re­cent di­ag­nos­tic mea­sure­ments of the ECR plas­ma po­ten­tial and other plas­ma pa­ram­e­ters using an in-situ Lang­muir probe in­stalled in the ECR edge plas­ma and com­ple­men­tary mea­sure­ments [3] using an ex­ter­nal beam de­cel­er­a­tion method.
[1] D. Hitz et al. , “An All-Permanent Magnet ECR Ion Source for the ORNL MIRF Upgrade Project,” AIP Conference Proceedings 749, 123 (2005), Woodbury, NY.
[2] F.W. Meyer, “ECR-Based Atomic Collision Physics Research at ORNL MIRF,” in Trapping Highly Charged Ions: Fundamentals and Applications, J. Gillaspy, ed., Nova Science Pub., New York, 2000, pp. 117-164.
[3] P.R. Harris and F.W. Meyer, Rev. Sci. Inst. 81, 02A310 (2010).
 
slides icon Slides MOCOBK04 [2.645 MB]